REVIEW ARTICLE

‘Nonclassical’ states in quantum optics: a ‘squeezed’ review of the first 75 years

V V Dodonov

Departamento de Física, Universidade Federal de São Carlos, Via Washington Luiz km 235, 13565-905 São Carlos, SP, Brazil
E-mail: vvdodonov@df.ufscar.br

Received 21 November 2001
Published 8 January 2002
Online at stacks.iop.org/JOptB/4/R1

Abstract
Seventy five years ago, three remarkable papers by Schrödinger, Kennard and Darwin were published. They were devoted to the evolution of Gaussian wave packets for an oscillator, a free particle and a particle moving in uniform constant electric and magnetic fields. From the contemporary point of view, these packets can be considered as prototypes of the coherent and squeezed states, which are, in a sense, the cornerstones of modern quantum optics. Moreover, these states are frequently used in many other areas, from solid state physics to cosmology. This paper gives a review of studies performed in the field of so-called ‘nonclassical states’ (squeezed states are their simplest representatives) over the past seventy five years, both in quantum optics and in other branches of quantum physics.

My starting point is to elucidate who introduced different concepts, notions and terms, when, and what were the initial motivations of the authors. Many new references have been found which enlarge the ‘standard citation package’ used by some authors, recovering many undeservedly forgotten (or unnoticed) papers and names. Since it is practically impossible to cite several thousand publications, I have tried to include mainly references to papers introducing new types of quantum states and studying their properties, omitting many publications devoted to applications and to the methods of generation and experimental schemes, which can be found in other well known reviews. I also mainly concentrate on the initial period, which terminated approximately at the border between the end of the 1980s and the beginning of the 1990s, when several fundamental experiments on the generation of squeezed states were performed and the first conferences devoted to squeezed and ‘nonclassical’ states commenced. The 1990s are described in a more ‘squeezed’ manner: I have confined myself to references to papers where some new concepts have been introduced, and to the most recent reviews or papers with extensive bibliographical lists.

Keywords: Nonclassical states, squeezed states, coherent states, even and odd coherent states, quantum superpositions, minimum uncertainty states, intelligent states, Gaussian packets, non-Gaussian coherent states, phase states, group and algebraic coherent states, coherent states for general potentials, relativistic oscillator coherent states, supersymmetric states, para-coherent states, q-coherent states, binomial states, photon-added states, multiphoton states, circular states, nonlinear coherent states

1. Introduction

The terms ‘coherent states’, ‘squeezed states’ and ‘nonclassical states’ can be encountered in almost every modern paper on quantum optics. Moreover, they are frequently used in many other areas, from solid state physics to cosmology. In 2001 and 2002 it will be seventy five years since the publication of three papers by Schrödinger [1], Kennard [2] and Darwin [3], in which the evolutions of Gaussian wavepackets for an oscillator, a free particle and a particle moving in uniform constant...
electric and magnetic fields were considered. From the contemporary point of view, these packets can be considered as prototypes of the coherent and squeezed states, which are, in a sense, the cornerstones of modern quantum optics. Since the squeezed states are the simplest representatives of a wide family of ‘nonclassical states’ in quantum optics, it seems appropriate, bearing in mind that in the Internet era it is easier to find recent reviews or papers with extensive bibliographical lists, that some new concepts have been introduced, and to the most fundamental experiments on the generation of squeezed states of the 1980s and the beginning of the 1990s, when several periods, I have confined myself to references to papers where I hope that the present review will help many researchers, especially the young, to obtain a less deformed vision of the subject.

One of the most complicated problems for any author writing a review is an inability to supply the complete list of all publications in the area concerned, due to their immense number. In order to diminish the length of the present review, I tried to include only references to papers introducing new types of quantum states and studying their properties, omitting many publications devoted to applications and to the methods of generation and experimental schemes. The corresponding references can be found, e.g., in other reviews [4–6]. I also concentrate mainly on the initial period, which terminated approximately at the border between the end of the 1980s and the beginning of the 1990s, when several fundamental experiments on the generation of squeezed states were performed and the first conferences devoted to squeezed and ‘nonclassical’ states commenced. The 1990s are described in a more ‘squeezed’ manner, because the recent history will be familiar to the readers. For this reason, describing that period, I have confined myself to references to papers where some new concepts have been introduced, and to the most recent reviews or papers with extensive bibliographical lists, bearing in mind that in the Internet era it is easier to find recent publications (contrary to the case of forgotten or little known old publications).

2. Coherent states

It is well known that it was Schrödinger [1] who constructed for the first time in 1926 the ‘nonspreading wavepackets’ of the harmonic oscillator. In modern notation, these packets can be written as (in the units $\hbar = m = \omega = 1$):

$$\langle x | \alpha \rangle = \pi^{-1/4} \exp(-\frac{1}{2} x^2 + \sqrt{2} x \alpha - \frac{1}{2} \alpha^2 - \frac{1}{4} | \alpha|^2).$$

(1)

A complex parameter α determines the mean values of the coordinate and momentum according to the relations:

$$\langle \hat{x} \rangle = \sqrt{2} \text{Re} \alpha, \quad \langle \hat{p} \rangle = \sqrt{2} \text{Im} \alpha.$$

The variances of the coordinate and momentum operators, $\sigma_x = \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2$ and $\sigma_p = \langle \hat{p}^2 \rangle - \langle \hat{p} \rangle^2$, have equal values, $\sigma_x = \sigma_p = 1/2$, so their product assumes the minimal value permitted by the Heisenberg uncertainty relation,

$$\langle \sigma_x \sigma_p \rangle_{\text{min}} = 1/4$$

(in turn, this relation, which was formulated by Heisenberg [8] as an approximate inequality, was strictly proven by Kennard [2] and Weyl [9]).

The simplest way to arrive at formula (1) is to look for the eigenstates of the non-Hermitian annihilation operator $\hat{a} = (\hat{x} + i \hat{p}) / \sqrt{2}$ satisfying the commutation relation

$$[\hat{a}, \hat{\alpha}^\dagger] = 1,$$

so that:

$$\hat{a}|\alpha\rangle = \alpha|\alpha\rangle.$$

(4)

For example, this was done by Glauber in [10], where the name ‘coherent states’ appeared in the text for the first time. However, several authors did similar things before him. The annihilation operator possessing property (3) was introduced by Fock [11], together with the eigenstates $|n\rangle$ of the number operator $\hat{n} = \hat{a}^\dagger \hat{a}$, known nowadays as the ‘Fock states’ (the known eigenfunctions of the harmonic oscillator in the coordinate representation in terms of the Hermite polynomials were obtained by Schrödinger in [12]). And it was Iwata who considered for the first time in 1951 [13] the eigenstates of the non-Hermitian annihilation operator \hat{a}, having derived formula (1) and the now well known expansion over the Fock basis:

$$|\alpha\rangle = \exp(-|\alpha|^2/2) \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$

(5)

The states defined by means of equations (4) and (5) were used as some auxiliary states, permitting to simplify calculations, by Schwinger [14] in 1953. Later, their mathematical properties were studied independently by Rashevskiy [15], Klauzer [16] and Bargmann [17], and these states were discussed briefly by Henley and Thirring [18].

The coherent state (5) can be obtained from the vacuum state $|0\rangle$ by means of the unitary displacement operator:

$$|\alpha\rangle = D(\alpha)|0\rangle, \quad D(\alpha) = \exp(\alpha \hat{a}^\dagger - \alpha^* \hat{a})$$

(6)

which was actually used by Feynman and Glauber as far back as 1951 [19, 20] in their studies of quantum transitions caused by the classical currents (which are reduced to the problem of the forced harmonic oscillator, studied, in turn, in the 1940s–1950s by Bartlett and Moyal [21], Feynman [22], Ludwig [23], Husimi [24] and Kerner [25]).

However, only after the works by Glauber [10] and Sudarshan [26] (and especially Glauber’s work [27]), did the coherent states become widely known and intensively used by many physicists. The first papers published in magazines, which had the combination of words ‘coherent states’ in their titles, were [27, 28].

Coherent states have always been considered as the most classical ones (among the pure quantum states, of
One can try to ‘minimize’ the generalized Heisenberg uncertainty relation for Hermitian operators \hat{A} and \hat{B} different from \hat{x} and \hat{p},

$$\Delta \hat{A} \Delta \hat{B} \geq \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle|,$$

looking, for instance, for the states for which (11) becomes the equality.

Actually, all these approaches have been used for several decades of studies of ‘generalized coherent states’. Some concrete families of states found in the framework of each method will be described in the following sections.

The ‘nonclassicality’ of the Fock states and their finite superpositions was mentioned in [31]. A simple criterion of ‘nonclassicality’ can be established, if one considers a generic Gaussian wavepacket with unequal variances of two quadratures, whose P-function reads [32] (in the special case of the statistically uncorrelated quadrature components)

$$P_G(\alpha) = N \exp \left[-\frac{(\Re \alpha - a)^2}{\sigma_1 - 1/2} - \frac{(\Im \alpha - b)^2}{\sigma_2 - 1/2} \right]$$

(a and b give the position of the centre of the distribution in the α-plane; the symbol N hereafter is used for the normalization factor). Since function (12) exists as a normalizable distribution only for $\sigma_1 \geq 1/2$ and $\sigma_2 \geq 1/2$, the states possessing one of the quadrature component variances less than 1/2 are nonclassical. This statement holds for any (not only Gaussian) state. Indeed, one can easily express the quadrature variance in terms of the P-function:

$$\sigma_\alpha = \frac{1}{2} \int P(\alpha) [(\alpha + \alpha^*) - (\hat{a} + \hat{a}^*)]^2 + 1] d \Re \alpha d \Im \alpha.$$

If $\sigma_\alpha < 1/2$, then function $P(\alpha)$ must assume negative values, thus it cannot be interpreted as a classical probability [32].

Another example of a ‘nonclassical’ state is a superposition of two different coherent states [33]. As a matter of fact, all pure states, excepting the coherent states, are ‘nonclassical’, both from the point of view of their physical contents [34] and the formal definition in terms of the P-function given above [35]. However, speaking of ‘nonclassical’ states, people usually have in mind not an arbitrary pure state, but members of some families of quantum states possessing more or less useful or distinctive properties. One of the aims of this paper is to provide a brief review of the known families which have been introduced whilst trying to follow the historical order of their appearance.

According to the Web of Science electronic database of journal articles, the combination of words ‘nonclassical states’ appeared for the first time in the titles of the papers by Helstrom, Hillery and Mandel [36]. The first three papers containing the combination of words ‘nonclassical effects’ were published by Loudon [37], Zubairy, and Lugiato and Strini [38]. ‘Nonclassical light’ was the subject of the first three studies by Schubert, Janszky et al and Gea-Banacloche [39].

3. Squeezed states

3.1. Generic Gaussian wavepackets

Historically, the first example of the nonclassical (squeezed) states was presented as far back as in 1927 by Kennard [2] (see the story in [40]), who considered, in particular, the evolution in time of the generic Gaussian wavepacket

$$\psi(x) = \exp(-ax^2 + bx + c)$$

of the harmonic oscillator. In this case, the quadrature variances may be arbitrary (they are determined by the real
3.2. The first appearance of the squeezing operator

An important contribution to the theory of squeezed states was made by Infeld and Plebański [43–45], whose results were summarized in a short article [46]. Plebański introduced the following family of states

\[|\tilde{\psi}\rangle = \exp\left[i(\eta \tilde{x} - \tilde{\eta} \tilde{p})\right] \exp\left[i\frac{\alpha}{2} \log \left(\tilde{x} \tilde{p} + \tilde{p} \tilde{x}\right)\right] |\psi\rangle, \tag{15} \]

where \(\tilde{x}, \tilde{p}, \alpha > 0 \) are real parameters, and \(|\psi\rangle\) is an arbitrary initial state. Evidently, the first exponential in the right-hand side of (15) is nothing but the displacement operator (6) written in terms of the Hermitian quadrature operators. Its properties were studied in the first article [43].

The second exponential is the special case of the squeezing operator (see equation (21)). For the initial vacuum state, \(|\psi_0\rangle = |0\rangle\), the state \(|\tilde{\psi}_0\rangle\) (15) is exactly the squeezed state in modern terminology, whereas by choosing other initial states one can obtain various generalized squeezed states. In particular, the choice \(|\tilde{\psi}_n\rangle = |n\rangle\) results in the family of the squeezed number states, which were considered in [45, 46]. In the case \(\alpha = 1 \) (considered in [43]) we arrive at the states known nowadays by the name displaced number states. Plebański gave the explicit expressions describing the time evolution of the state (15) for the harmonic oscillator with a constant frequency and proved the completeness of the set of ‘displaced’ number states. Infeld and Plebański [44] performed a detailed study of the properties of the unitary operator \(\exp(i\tilde{T})\), where \(\tilde{T}\) is a generic inhomogeneous quadratic form of the canonical operators \(\tilde{x}\) and \(\tilde{p}\) with constant \(c\)-number coefficients, giving some classification and analysing various special cases (some special cases of this operator were discussed briefly by Bargmann [17]). Unfortunately, the publications cited appeared to be practically unknown or forgotten for many years.

3.3. From ‘characteristic’ to ‘minimum uncertainty’ states

In 1966, Miller and Mishkin [47] deformed the defining equation (4), introducing the ‘characteristic states’ as the eigenstates of the operator

\[\hat{b} = u\hat{a} + v\hat{a}^\dagger \tag{16} \]

(for real \(u\) and \(v\)). In order to preserve the canonical commutation relation \([\hat{b}, \hat{b}^\dagger] = 1\) one should impose the constraint \(|u|^2 - |v|^2 = 1\).

Similar states were considered by Lu [48], who called them ‘new coherent states,’ and by Bialynicki-Birula [49]. The general structure of the wavefunctions of these states in the coordinate representation is

\[\langle x|\beta\rangle = \langle x|\hat{a}^\dagger \hat{a}\rangle^{-1/2} \exp\left[\sqrt{2}\beta(x - \hat{x}) + \frac{\beta^*}{2\sqrt{2}} \left(\frac{\hat{p}^2}{2\hat{x}}\right)\right], \tag{17} \]

where \(\hat{x}, \hat{p}\) are arbitrary real parameters, and \(\beta > 0\). A detailed study of the Gaussian states of the harmonic oscillator was performed by Takahasi [42].

\[\int dx |\psi(x)\rangle \langle \psi(x)| = \int dx |\tilde{\psi}(x)\rangle \langle \tilde{\psi}(x)| = \int dx |\tilde{\psi}(x)\rangle \tilde{\psi}^\dagger(x) = 1, \]

which is called the completeness relation. Similar states were considered by Lu [48].

\[|\tilde{\psi}(x)\rangle = \exp\left[i \frac{\beta^*}{2\sqrt{2}} \left(\frac{\hat{p}^2}{2}\right)\right] |\tilde{\psi}(x)\rangle, \tag{18} \]

where \(\tilde{\psi}(x)\rangle\) is a generic inhomogeneous quadratic form of the canonical operators \(\hat{x}\) and \(\hat{p}\) with constant \(c\)-number coefficients.

3.4. Coherent states of nonstationary oscillators and Gaussian packets

The operators like (16) and the state (17) arise naturally in the process of the dynamical evolution governed by the Hamiltonian

\[\hat{H} = \hat{a}^\dagger \hat{a} + \kappa \hat{a}^{12}\exp{-i\omega t} + \text{h.c.}, \tag{22} \]

which describes the degenerate parametric amplifier. This problem was studied in detail by Takahasi in 1965 [42]. Similar two-mode states were considered implicitly in 1967 by Mollow and Glauber [32], who developed the quantum theory of the nondegenerate parametric amplifier, described by the interaction Hamiltonian between two modes of the form

\[\hat{H}_{\text{int}} = \hat{a}^\dagger \hat{b}^\dagger \exp{-i\omega t} + \text{h.c.}. \]

In the case of an oscillator with arbitrary time-dependent frequency \(\omega(t)\), the evolution of initially coherent states was considered in [54], where the operator \(\exp(i\hat{a}^{12} + \hat{a}^\dagger\hat{a})\) naturally appeared. The generalizations of the coherent
The states (4) as the eigenstates of the linear time-dependent integral of motion operator

\[\hat{A} = [\varepsilon(t) \hat{p} - \varepsilon(t) \hat{x}] / \sqrt{2}, \quad [\hat{A}, \hat{A}^\dagger] = 1, \]

(23)

where function \(\varepsilon(t) \) is a specific complex solution of the classical equation of motion

\[\ddot{\varepsilon} + \omega^2(t) \varepsilon = 0, \quad \text{Im} = 1(\dot{\varepsilon} \varepsilon^*), \]

(24)

have been introduced by Malkin and Man'ko [55]. The integral of motion (23) satisfies the equation

\[i\hbar \partial / \partial t = \{\hat{H}, \hat{A}\} \]

(where \(\hat{H} \) is the Hamiltonian) and it has the structure (16), with complex coefficients \(u(t) \) and \(v(t) \), which are certain combinations of the functions \(\varepsilon(t) \) and \(\dot{\varepsilon}(t) \). The eigenstates of \(\hat{A} \) have the form (17). They are coherent with respect to the time-dependent operator \(\hat{A} \) (equivalent to \(\hat{b}(t) \) (16) and generalizing (20)), but they are squeezed with respect to the quadrature components of the ‘initial’ operator \(\hat{a} \) defined via (19). For the most general forms in the case of one degree of freedom see, e.g., [56] and the review [57].

Coherent states of a charged particle in a constant homogeneous magnetic field (generalizations of Darwin’s packets [3]) have been introduced by Malkin and Man’ko in [58] (see also [59]). Generalizations of the nonstationary oscillator coherent states to systems with several degrees of freedom, such as a charged particle in nonstationary homogeneous magnetic and electric fields plus a harmonic potential, were studied in detail in [60–62]. Multidimensional time-dependent coherent states for arbitrary quadratic Hamiltonians have been introduced in [63]. Their wavefunctions were expressed in the form of generic Gaussian exponentials of \(N \) variables. From the modern point of view, all those states can be considered as squeezed states, since the variances of different canonically conjugated variables can assume values which are less than the ground state variances. Similar one-dimensional and multidimensional quantum Gaussian states were studied in connection with the problems of the theories of photodetection, measurements, and information transfer in [64, 65]. The method of linear time-dependent integrals of motion turned out to be very effective for treating both the problem of an oscillator with time-dependent frequency (other approaches are due to Fujiwara, Husimi and, especially, Lewis and Riesenfeld [24, 66]) and generic systems with multidimensional quadratic Hamiltonians. For detailed reviews see, e.g., [57, 67].

Approximate quasiclassical solutions to the Schrödinger equation with arbitrary potentials, in the form of the Gaussian packets whose centres move along the classical trajectories, have been extensively studied in many papers by Heller and his coauthors, beginning with [68]. The first coherent states for the relativistic particles obeying the Klein–Gordon or Dirac equations have been introduced in [69].

3.5. Possible applications and first experiments with ‘two-photon’ and ‘squeezed’ states

The first detailed review of the states defined by the relations (16) and (17) was given in 1976 by Yuen [70], who proposed the name ‘two-photon states’. Up to that time, it was recognized that such states can be useful for solving various fundamental physical and technological problems. In particular, in 1978, Yuen and Shapiro [71] proposed to use the two-photon states in order to improve optical communications by reducing the quantum fluctuations in one (signal) quadrature component of the field at the expense of the amplified fluctuations in another (unobservable) component. Also, the states with the reduced quantum noise in one of the quadrature components appeared to be very important for the problems of measurement of weak forces and signals, in particular, for the detectors of gravitational waves and interferometers [72–76]. With the course of time, the terms ‘squeezing’, ‘squeezed states’ and ‘squeezed operator’, introduced in the papers by Hollenhorst and Caves [72, 75], became generally accepted, especially after the article by Walls [77], and they have replaced other names proposed earlier for such states. It is interesting to notice in this connection, that exactly at the same time, the same term ‘squeezing’ was proposed (apparently completely independently) by Brosa and Gross [78] in connection with the problem of nuclear collisions (they considered a simple model of an oscillator with time-dependent mass and fixed elastic constant, whereas in the simplest quantum optical oscillator models squeezed states usually appear in the case of time-dependent frequency and fixed mass). The words ‘squeezed states’ were used for the first time in the titles of papers [79–82], whereas the word ‘squeezing’ appeared in the titles of studies (in the field of quantum optics) [83–85], and ‘squeezed light’ was discussed in [86].

At the end of the 1970s and the beginning of the 1980s, many theoretical and experimental studies were devoted to the phenomena of antibunching or sub-Poissonian photon statistics, which are unequivocal features of the quantum nature of light. The relations between antibunching and squeezing were discussed, e.g., in [87], and the first experiment was performed in 1977 [88] (for the detailed story see, e.g., [37, 89]). Many different schemes of generating squeezed states were proposed, such as the four-wave mixing [90], the resonance fluorescence [91, 92], the use of the free-electron laser [80, 93], the Josephson junction [80, 94], the harmonic generation [84, 95], two- and multiphoton absorption [83, 96] and parametric amplification [79, 83, 97], etc. In 1985 and 1986 the results of the first successful experiments on the generation and detection of squeezed states were reported in [98] (backward four-wave mixing), [99] (forward four-wave mixing) and [100] (parametric down conversion). Details and other references can be found, e.g., in [101].

3.6. Correlated, multimode and thermal states

The states (17) with complex parameters \(u, v \) do not minimize the Heisenberg uncertainty product. But they are MUS for the Schrödinger–Robertson uncertainty relation [102]

\[\sigma_p \sigma_x - \sigma_p^2 \rho_p \geq \hbar / 2, \]

(25)

which can also be written in the form

\[\sigma_p \sigma_x \geq \hbar^2 / [4(1 - r^2)]. \]

(26)
where \(r \) is the *correlation coefficient* between the coordinate and momentum:

\[
r = \frac{\sigma_{px}}{\sqrt{\sigma_p^2 \sigma_t}}
\]

\(\sigma_{px} = \frac{1}{2} \langle \hat{p} \hat{x} + \hat{x} \hat{p} \rangle - \langle \hat{p} \rangle \langle \hat{x} \rangle. \)

For arbitrary Hermitian operators, inequality (25) should be replaced by [102]:

\[
\sigma_A \sigma_B - \sigma_{AB}^2 \geq |\langle [\hat{A}, \hat{B}] \rangle|/4.
\]

For further generalizations see, e.g., [103, 104].

Actually, the left-hand side of (26) takes on the minimal possible value \(\hbar^2/4 \) for any pure Gaussian state (this fact was known to Kennard [2]), which can be written as:

\[
\psi(x) = N \exp \left[-\frac{x^2}{4\sigma_{xx}} \left(1 - \frac{i r}{\sqrt{1 - r^2}} \right) + bx \right].
\]

In order to emphasize the role of the correlated coefficient, state (27) was named the *correlated coherent state* [105]. It is unitary equivalent to the squeezed states with complex squeezing parameters, which were considered, e.g., in [106].

The dynamics of Gaussian wavepackets possessing a nonzero correlation coefficient were studied in [107]. Correlated states of the free particle were considered (under the name ‘contractive states’) in [108]. Gaussian correlated packets were applied to many physical problems: from neutron interferometry [109] to cosmology [110]. Reviews of properties of correlated states (including multidimensional systems, e.g., a charge in a magnetic field) can be found in [57, 111–113].

In the 1990s, various features of squeezed states (including phase properties and photon statistics) were studied and reviewed, e.g., in [114]. Different kinds of two-mode squeezed states, generated by the two-mode squeeze operator of the form \(\exp(\zeta a b - z^\dagger a^\dagger b + \cdots) \), were studied (sometimes implicitly or under different names, such as ‘cranked oscillator states’ or ‘sheared states’) in [115]. *Multimode squeezed states* were considered in [116]. The properties of generic (pure and mixed) Gaussian states (in one and many dimensions) were studied in [117–121]. Their special cases, sometimes named *mixed squeezed states* or *squeezed thermal states*, were discussed in [122–124]. Mixed analogues of different families of coherent and squeezed states were studied in [125]. *Greybody states* were considered in [126]. ‘Squashed states’ have been introduced recently in [127].

Implicitly, the squeezed states of a charged particle moving in a homogeneous (stationary and nonstationary) magnetic field were considered in [60, 61]. In the explicit form they were introduced and studied in [111] and independently in [128]. For further studies see, e.g., [129–131]. In the case of an arbitrary (inhomogeneous) electromagnetic field or an arbitrary potential, the quasiclassical Gaussian packets centred on the classical trajectories (frequently called *trajectory-coherent states*) have been studied in [132].

The specific families of two- and multimode quantum states connected with the polarization degrees of freedom of the electromagnetic field (*biphotons, unpolarized light*) have been introduced by Karassiov [133]. For other studies see, e.g., [134].

3.7. Invariant squeezing

The instantaneous variances of values \(\sigma_x, \sigma_p \) and \(\sigma_{xp} \) cannot serve as true measures of squeezing in all cases, since they depend on time in the course of the free evolution of an oscillator. For example,

\[
\sigma_x(t) = \sigma_x(0) \cos^2(t) + \sigma_p(0) \sin^2(t) + \sigma_{xp}(0) \sin(2t)
\]

(in dimensionless units), and it can happen that both variances \(\sigma_x \) and \(\sigma_p \) are large, but nonetheless the state is highly squeezed due to large nonzero covariance \(\sigma_{xp} \). It is reasonable to introduce some invariant characteristics which do not depend on time in the course of free evolution (or on phase angle in the definition of the field quadrature as \(\hat{E}(\varphi) = \hat{a} \exp(-i\varphi) + \hat{a}^\dagger \exp(i\varphi) \) / \(\sqrt{2} \) [135]). They are related to the invariants of the total variance matrix or to the lengths of the principal axes of the ellipse of equal quasiprobabilities, which gives a graphical image of the squeezed state in the phase space [136] (this explains the name ‘principal squeezing’ used in [137]). The minimal \(\sigma_x \) and maximal \(\sigma_p \) values of the variances \(\sigma_x \) or \(\sigma_p \) can be found by looking for extremal values of \(\sigma_x(t) \) as a function of time [130]

\[
\sigma_x = \mathcal{E} \pm \sqrt{d^2 - d},
\]

where \(\mathcal{E} = \frac{1}{2} (\sigma_x + \sigma_p) \equiv \frac{1}{2} (\langle \hat{a}^\dagger \hat{a} \rangle - |\langle \hat{a} \rangle|^2) \) is the energy of quantum fluctuations (which is conserved in the process of free evolution), whereas parameter \(d = \sigma_x \sigma_p - \sigma_{xp}^2 \), coinciding with the left-hand side of the Schrödinger–Roberson uncertainty relation (25), determines (for Gaussian states) the quantum ‘purity’ [118] \(\text{Tr}_{\text{Gauss}} \hat{\rho}^2 = 1/\sqrt{4d} \), being the simplest example of the so-called *universal quantum invariants* [138]. The expressions equivalent to (28) were obtained in [135–137]. Evidently, \(\mathcal{E} \leq \frac{1}{2} + \bar{n} \), where \(\bar{n} \) is the mean photon number. Then one can easily derive from (28) the inequalities:

\[
\sigma_x \geq \bar{n} + 1/2 - \sqrt{(\bar{n} + 1/2)^2 - d} \geq \frac{d}{1 + 2\bar{n}}.
\]

For pure states (\(d = 1/4 \)) these inequalities were found in [139]. For quantum mixtures, squeezing (\(\sigma_x < 1/2 \)) is possible provided \(\bar{n} \geq d^2 - 1/4 \).

3.8. General concepts of squeezing

The first definition of squeezing for arbitrary Hermitian operators \(\hat{A}, \hat{B} \) was given by Walls and Zoller [91]. Taking into account the uncertainty relation (11), they said that fluctuations of the observable \(\hat{A} \) are ‘reduced’ if:

\[
(\Delta \hat{A})^2 < \frac{1}{2} |\langle [\hat{A}, \hat{B}] \rangle|.
\]

This definition was extended to the case of several variables (whose operators are generators of some algebra) in [140] and specified in [141].

Hong and Mandel [142] introduced the concept of higher-order squeezing. The state \(|\psi \rangle \) is squeezed to the \(2n \)th order in some quadrature component, say \(\hat{x} \), if the mean value \(|\langle \psi | (\Delta \hat{x})^{2n} |\psi \rangle \) is less than the mean value of \((\Delta \hat{x})^{2n} \) in the
coherent state. If $\hat{\lambda}$ is defined as in (19), then the condition of squeezing reads:

$$(\Delta \hat{\lambda})^{2n} < 2^{-n}(2n - 1)!.$$...

In particular, for $n = 2$ we have the requirement $((\Delta \hat{\lambda})^{2}) < 3/4$. Hong and Mandel showed that the usual squeezed states are squeezed to any even order $2n$. The methods of producing such squeezing were proposed in [143].

Other definitions of the higher-order squeezing are usually based on the Walls–Zoller approach. Hillery [144] defined the second-order squeezing taking in (30):

$$\hat{A} = (\hat{a}^2 + \hat{a}^\dagger)^2/2, \quad \hat{B} = (\hat{a}^2 - \hat{a}^\dagger)^2/(2i).$$

A generalization to the kth-order squeezing, based on the operators $\hat{A} = (\hat{a}^2 + \hat{a}^\dagger)^2/2$ and $\hat{B} = (\hat{a}^2 - \hat{a}^\dagger)^2/(2i)$, was made in [145]. The uncertainty relations for higher-order moments were considered in [103]. For other studies on higher order squeezing see, e.g., [124, 146–149].

The concepts of the sum squeezing and difference squeezing were introduced by Hillery [150], who considered two-mode systems and used sums and differences of various bilinear combinations constructed from the creation and annihilation operators. These concepts were developed (including multimode generalizations) in [151]. A method of constructing squeezed states for general systems (different from the harmonic oscillator) was described in [152], where the eigenstates of the operator $\mu\hat{a}^2 + v\hat{a}^\dagger^2$ were considered as an example (see also [153]).

The concept of amplitude squeezing was introduced in [154]. It means the states possessing the property $\Delta n < \sqrt{(n)}$ (for the coherent states, $\Delta n = \sqrt{(n)}$, where n is the photon number). For further development see, e.g., [155]. Physical bounds on squeezing due to the finite energy of real systems were discussed in [156].

3.9. Oscillations of the distribution functions

While the photon distribution function $p_n = \langle n | \hat{\rho} | n \rangle$ is rather smooth for the ‘classical’ thermal and coherent states (being given by the Planck and Poisson distributions, respectively), it reveals strong oscillations for many ‘nonclassical’ states. The function p_n for a generic squeezed state was given in [70]

$$p_n = \frac{|v/(2\mu)|^n}{n!} \exp \left(\frac{\beta^2 v^2}{u} \right) \left| \beta^2 \right|^n |H_n\left(\frac{\beta}{\sqrt{2uv}} \right)|^2,$$

where $H_n(z)$ is the Hermite polynomial. The graphical analysis of this distribution made in [157] showed that for certain relations between the squeezing and displacement parameters, the photon distribution function exhibits strong irregular oscillations, whereas for other values of the parameters it remains rather regular. Ten years later, these oscillations were rediscovered in [158–162], and since that time they have attracted the attention of many researchers, mainly due to their interpretation [163] as the manifestation of the interference in phase space (a method of calculating quasiclassical distributions, based on the areas of overlapping in the phase plane, was used earlier in [164]).

It is worth mentioning that as far back as 1970, Walls and Barakat [165] discovered strong oscillations of the photon distribution functions, calculating eigenstates of the trilinear Hamiltonian $\hat{H}_{WB} = \sum_{k=1}^{3} \omega_k \hat{a}_k^\dagger \hat{a}_k + \kappa (\hat{a}^2 \hat{a}_1^\dagger + \text{h.c.})$. The parametric amplifier time-dependent Hamiltonian (22), which ‘produces’ squeezed states, can be considered as the semiclassical approximation to \hat{H}_{WB}. For recent studies on trilinear Hamiltonians and references to other publications see [166].

The photocount distributions and oscillations in the two-mode nonclassical states were studied in [167]. The influence of thermal noise was studied in [123, 159, 168, 169]. The cumulants and factorial moments of the squeezed state photon distribution function were considered in [162, 168]. They exhibit strong oscillations even in the case of slightly squeezed states [170]. For other studies see, e.g., [171].

4. Non-Gaussian oscillator states

4.1. Displaced and squeezed number states

These states are obtained by applying the displacement operator $\hat{D}(\alpha)$ (6) or the squeezing operator $\hat{S}(z)$ (21) to the states different from the vacuum oscillator state $|0\rangle$. As a matter of fact, the first examples were given by Plebański [43], who studied the properties of the state $|n, \alpha\rangle = \hat{D}(\alpha)|n\rangle$. His results were rediscovered in [172], where the name semicoherent state was used. The general construction $\hat{D}(\alpha)|\psi_0\rangle$ for an arbitrary fiducial state $|\psi_0\rangle$ was considered by Klauder [16]. The special case of the states $|n, z\rangle = \hat{S}(z)|n\rangle$ (known now under the name squeezed number states) for real z was considered in [45, 46]. These states were also briefly discussed by Yuen [70]. The displaced number states were considered in connection with the time-energy uncertainty relation in [173]. They can be expressed as [174]:

$$|n, \alpha\rangle = \hat{D}(\alpha)|n\rangle = N(\hat{a} - \alpha^\dagger)^n|\alpha\rangle.$$ (31)

The detailed studies of different properties of displaced and squeezed number states were performed in [123, 146, 175].

4.2. First finite superpositions of coherent states

Titulaer and Glauber [176] introduced the ‘generalized coherent states’, multiplying each term of expansion (5) by arbitrary phase factors:

$$|\alpha\rangle_e = \exp(-|\alpha|^2/2) \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \exp(i\theta_n)|n\rangle.$$ (32)

These are the most general states satisfying Glauber’s criterion of ‘coherence’ [27]. Their general properties and some special cases corresponding to the concrete dependences of the phases θ_n on n were studied in [177, 178].

In particular, Bialynicka-Birula [177] showed that in the periodic case, $\theta_{e+N} = \theta_n$ (with arbitrary values $\theta_0, \theta_1, \ldots, \theta_{N-1}$), state (32) is the superposition of N Glauber’s coherent states, whose labels are uniformly distributed along the circle $|\alpha| = \text{const}$:

$$|\phi\rangle = \sum_{k=1}^{N} c_k |\alpha_0 \exp(i\phi_k)\rangle, \quad \phi_k = 2\pi k/N.$$ (33)
The amplitudes c_k are determined from the system of N equations $(m = 0, 1, \ldots, N - 1)$
\[
\sum_{k=1}^{N} c_k \exp(i m \phi_k) = \exp(i \theta_m),
\]
and they are different in the generic case. Stoler [178] has noticed that any sum (33) is an eigenstate of the operator \hat{a}^N with the eigenvalue a_k^N, therefore it can be represented as a superposition of N orthogonal states, each one being a certain combination of N coherent states $|a_0 \exp(i \phi_0)\rangle$.

4.3. Even and odd thermal and coherent states

An example of ‘nonclassical’ mixed states was given by Cahill and Glauber [33], who discussed in detail the displaced thermal states (such states, which are obviously ‘classical’, were also studied in [32, 179]) and compared them with the following quantum mixture:
\[
\hat{\rho}_{\text{th}} = \frac{2}{2 + \pi} \sum_{n=0}^{\infty} \left(\frac{\pi}{2 + \pi} \right)^n |2n\rangle\langle 2n|.
\]

The even and odd coherent states
\[
|\alpha\rangle_\pm = \mathcal{N}_\pm(\{|\alpha\rangle \pm | - \alpha\rangle\}),
\]
where $\mathcal{N}_\pm = (2[1 \pm \exp(-2|\alpha|^2)]^{-1/2}$, have been introduced by Dodonov et al. [180]. They are not reduced to the superpositions given in (33), since coefficients $c_1 = \pm c_2$ can never satisfy equations (34) for real phases θ_0, θ_1. Besides, the photon statistics of the states (36) are quite different from the Poissonian statistics inherent to all states of the form (32). Even/odd states possess many remarkable properties: if $|\alpha| \gg 1$, they can be considered as the simplest examples of macroscopic quantum superpositions or ‘Schrödinger cat states’: being eigenstates of the operator \hat{a}^2 (cf equation (10)), the states $|\alpha\rangle_\pm$ are the simplest special cases of the multiphoton states (see later); they can be obtained from the vacuum by the action of nonexponential displacement operators
\[
\hat{D}_+(\alpha) = \cosh(\alpha \hat{a}^\dagger - \alpha^* \hat{a}) \quad \hat{D}_-(\alpha) = \sinh(\alpha \hat{a}^\dagger - \alpha^* \hat{a})
\]
(cf equation (9)), etc. Moreover, from the modern point of view, the special cases of the time-dependent wavepacket solutions of the Schrödinger equation for the (singular) oscillator with a time-dependent frequency found in [180] are nothing but the odd squeezed states.

Parity-dependent squeezed states
\[
[\hat{S}(z_1)\hat{F}_+ + \hat{S}(z_2)\hat{F}_-]|\alpha\rangle
\]
where \hat{F}_\pm are the projectors to the even/odd subspaces of the Hilbert space of Fock states, were studied in [181]. The actions of the squeezing and displacement operators on the superpositions of the form $|\alpha, \tau, \varphi\rangle = \mathcal{N}(|\alpha\rangle + \tau e^{i \varphi} | - \alpha\rangle)$ (which contain as special cases even/odd, Yurke–Stoler, and coherent states) were studied in [182] (the special case $\tau = 1$ was considered in [183]). For other studies see, e.g., [6, 184–188]. Multidimensional generalizations have been studied in [189].

The name shadowed states was given in [190] to the mixed states whose statistical operators have the form $\hat{\rho}_{th} = \sum_p p_p |2n\rangle\langle 2n|$ (i.e., generalizing the even thermal state (35)). Mixed analogues of the even and odd states were considered in [191].

5. Coherent phase states

The state of the classical oscillator can be described either in terms of its quadrature components x and p, or in terms of the amplitude and phase, so that $x + ip = A \exp(ip)$. Moreover, in classical mechanics one can introduce the action and angle variables, which have the same Poisson brackets as the coordinate and momentum: $(p, x) = (I, \varphi) = 1$. However, in the quantum case we meet serious mathematical difficulties trying to define the phase operator in such a way that the commutation relation $[\hat{n}, \hat{\varphi}] = i$ would be fulfilled, if the photon number operator is defined as $\hat{n} = \hat{a}^\dagger \hat{a}$. These difficulties originate in the fact that the spectrum of operator \hat{n} is bounded from below.

The first solution to the problem was given by Susskind and Glogower [192], who introduced, instead of the phase operator itself, the exponential phase operator
\[
\hat{E}_- \equiv \hat{C} + i \hat{S} \equiv \sum_{n=1}^{\infty} |n - 1\rangle\langle n| = (\hat{a}^2 \hat{a}^\dagger)^{-1/2} \hat{a},
\]
which can be considered, to a certain extent, as a quantum analogue of the classical phase ρ [29, 193]. Operator \hat{E}_- and its Hermitian ‘cosine’ and ‘sine’ components satisfy the ‘classical’ commutation relations:
\[
[\hat{C}, \hat{n}] = i \hat{S}, \quad [\hat{S}, \hat{n}] = -i \hat{C}, \quad [\hat{E}_-, \hat{n}] = \hat{E}_-. \quad (38)
\]
However, operator \hat{E}_- is nonunitary, since the commutator with its Hermitianly conjugated partner $\hat{E}_+ = \hat{E}_-^\dagger$ is not equal to zero:
\[
[\hat{E}_-, \hat{E}_+] = 1 - \hat{C}^2 - \hat{S}^2 = |0\rangle\langle 0|. \quad (39)
\]
It is well known that the annihilation operator \hat{a} has no inverse operator in the full meaning of this term. Nonetheless, it possesses the right inverse operator
\[
\hat{a}^{-1} = \sum_{n=0}^{\infty} \frac{|n + 1\rangle\langle n|}{\sqrt{n + 1}} = \hat{a}^\dagger (\hat{a}^2 \hat{a}^\dagger)^{-1/2} = \hat{E}_+(\hat{a}^2)^{-1/2}, \quad (40)
\]
which satisfies, among many others, the relations:
\[
\hat{a}\hat{a}^{-1} = 1, \quad [\hat{a}, \hat{a}^{-1}] = |0\rangle\langle 0|, \quad [\hat{a}^\dagger, \hat{a}^{-1}] = \hat{a}^{-2}.
\]
This operator was discussed briefly by Dirac [194], who noticed that Fock considered it long before. However, it has only found applications in quantum optics in the 1990s (see the paragraph on photon-added states later). Lerner [195] noticed that the commutation relations (38) do not determine the operators \hat{C}, \hat{S} uniquely. Earlier, the same observation was made by Wigner [196] with respect to the triple $[\hat{n}, \hat{a}, \hat{a}^\dagger]$ (see the next section). In the general case, besides the ‘polar decomposition’ (37), which is equivalent to the relations
\[
\hat{E}_-|n\rangle = (1 - \delta_{n0})|n - 1\rangle, \quad \hat{E}_+|n\rangle = |n + 1\rangle, \quad (41)
\]
one can define operator $\hat{U} = \hat{C} + i \hat{S}$ via the relation $\hat{U}|n\rangle = f(n)|n\rangle - n - 1$, where function $f(n)$ may be arbitrary enough, being restricted by the requirement $f(0) = 0$ and certain other constraints which ensure that the spectra of the ‘cosine’ and ‘sine’ operators belong to the interval $(-1, 1)$. The properties of Lerner’s construction were studied in [197].
The states with the definite phase

$$|\varphi\rangle = \sum_{n=0}^{\infty} \exp(in\varphi) |n\rangle$$ \hspace{1cm} (42)

were considered in [29, 192]. However, they are not normalizable (like the coordinate or momentum eigenstates). The nonnormalizable coherent phase states were introduced in [198] as the eigenstates of the operator \hat{E}_-:

$$|\varepsilon\rangle = \sqrt{1 - e^{2\varepsilon^2}} \sum_{n=0}^{\infty} e^{n|n\rangle}$$ \hspace{1cm} (43)

The pure quantum state (43) has the same probability distribution $|\langle n|\varepsilon\rangle|^2$ as the mixed thermal state described by the statistical operator

$$\hat{\rho}_h = \frac{1}{1 + \Pi} \sum_{n=0}^{\infty} \left(\frac{\Pi}{1 + \Pi} \right)^n |n\rangle \langle n|$$ \hspace{1cm} (44)

if one identifies the mean photon number Π with $|\varepsilon|^2/(1 - |\varepsilon|^2)$ [199].

The two-parameter set of states $|\kappa; z\rangle$ has been introduced in [200] and studied in detail from different points of view in [180, 199, 201]. These states are eigenstates of the operator:

$$\hat{A}_z = \hat{E}_- \left[\frac{(\kappa + 1)^{n/2}}{\kappa + n} \right]^2 \hat{a}$$ \hspace{1cm} (46)

If $\kappa = 0$, $\hat{A}_0 = \hat{E}_-$, and the state $|\kappa; 0\rangle$ coincides with (43). If $\kappa \to \infty$, then $\hat{A}_\infty = \hat{a}$, and the state (45) goes to the coherent state $|z\rangle$ (5). In the 1990s the state (45) appeared again under the name phase coherent states (see also [212]).

For the most recent study on phase states see [213]. Comprehensive discussions of the problem of phase in quantum mechanics can be found, e.g., in [193, 214], and a detailed list of publications up to 1996 was given in the tutorial review [215].

The phase coherent state (43) was rediscovered in the beginning of the 1990s in [203] as a pure analogue of the thermal state. It was also noticed that this state yields a strong squeezing effect. By analogy with the usual squeezed states, which are eigenstates of the linear combination of the operators \hat{a}, \hat{a}^\dagger (16), the phase squeezed states (PSS) were constructed in [204] as the eigenstates of the operator $\hat{B} = \mu \hat{E}_- + v \hat{E}_+$.

The coefficients of the decomposition of PSS over the Fock basis are given by

$$c_n = \mathcal{N}(z_{n+1}^a - z_{n+1}^s), \quad z_{\pm} = \left(\beta \pm \sqrt{\beta^2 - 4\mu v} \right)/(2\mu),$$ \hspace{1cm} (48)

where β is the complex eigenvalue of \hat{B} and \mathcal{N} is the normalization factor. It is worth noting, however, that PSS have actually been introduced as far back as 1974 by Mathews and Eswaran [205], who minimized the ratio $(\Delta C)^2(\Delta S)^2/\langle |\hat{C}, \hat{S}| \rangle^2$, solving the equation ($v$ and λ are parameters):

$$[(1 + v)\hat{E}_- + (1 - v)\hat{E}_+]|\psi\rangle = \lambda |\psi\rangle.$$ \hspace{1cm} (49)

The continuous representation of arbitrary quantum states by means of the phase coherent states (43) (an analogue of the Klauuder–Glauber–Sudarshan coherent state representation) was considered in [206] (where it was called the analytic representation in the unit disk), [207] (under the name harmonic state representation), and [208]. Eigenstates of operator $\hat{Z}(\sigma) = \hat{E}_-(\hat{n} + \hat{\sigma})$,

$$|z; \sigma\rangle = \sum_{n=0}^{\infty} \frac{z^n|n\rangle}{\Gamma(n + \sigma + 1)}, \quad \hat{Z}(\sigma)|z; \sigma\rangle = z|z; \sigma\rangle,$$ \hspace{1cm} (49)

were named as phiophase states in [209]. If $\sigma = 0$, then (49) goes to the special case of the Barut–Girardello state (54) with $k = 1/2$.

The name ‘pseudothermal state’ was given to the state (43) in [210], where it was shown that this state arises naturally as an exact solution to certain nonlinear modifications of the Schrödinger equation. Shifted thermal states, which can be written as $\hat{\rho}_0^{\text{shift}} = \hat{E}_s \hat{\rho}_h \hat{E}_s$, have been considered in [211] (see also [212]).

For the most recent study on phase states see [213]. Comprehensive discussions of the problem of phase in quantum mechanics can be found, e.g., in [193, 214], and a detailed list of publications up to 1996 was given in the tutorial review [215].

6. Algebraic coherent states

6.1. Angular momentum and spin-coherent states

The first family of the coherent states for the angular momentum operators was constructed in [216], actually as some special two-dimensional oscillator coherent state, using the Schwinger representation of the angular momentum operators \hat{a}_x and \hat{a}_z:

$$\hat{J}_x = \hat{a}_x^{\dagger} \hat{a}_x, \quad \hat{J}_z = \hat{a}_z^{\dagger} \hat{a}_z, \quad \hat{J}_3 = \frac{i}{2} (\hat{a}_x^{\dagger} \hat{a}_z - \hat{a}_z^{\dagger} \hat{a}_x).$$ \hspace{1cm} (50)
Such ‘oscillator-like’ angular momentum coherent states were studied in [217]. A possibility of constructing ‘continuous’ families of states using different modifications of the unitary displacement (6) and squeezing (21) operators was recognized in the beginning of the 1970s. The first explicit example is frequently related to the coherent spin states [218] (also named atomic coherent states [219] and Bloch coherent states [220])

\[
|\theta, \varphi\rangle = \exp(\xi \hat{J}_z - \xi^* \hat{J}_-)|j, -j\rangle \\
\xi = (\theta/2) \exp(-i\varphi),
\]

(51)

where \(\hat{J}_a\) are the standard raising and lowering spin (angular momentum) operators, \(|j, m\rangle\) are the standard eigenstates of the operators \(\hat{J}^2\) and \(\hat{J}_z\), and \(\theta, \varphi\) are the angles in the spherical coordinates. However, the special case of these states for \(\varphi = \frac{\pi}{2}\) was considered much earlier by Klauder [16], who introduced the fermion coherent states \(|\beta\rangle = \sqrt{1 - |\beta|^2} |0\rangle + \beta |1\rangle\), where \(\beta\) could be an arbitrary complex number satisfying the inequality \(|\beta| \leq 1\). Also, Klauder studied generic states of the form (51) in [221]. A detailed discussion of the spin-coherent states was given in [222], whereas spin squeezed states were discussed in [223]. For recent publications on the angular momentum coherent states see, e.g., [224].

6.2. Group coherent states

The operators \(\hat{J}_a\), \(\hat{J}_-\) are the generators of the algebra \(su(2)\). A general construction looks like

\[
|\xi_1, \xi_2, \ldots, \xi_n\rangle = \exp(\xi_1 \hat{A}_1 + \xi_2 \hat{A}_2 + \cdots + \xi_n \hat{A}_n)|\psi\rangle,
\]

(52)

where \(|\xi_1\rangle\) is a continuous set of complex or real parameters, \(\hat{A}_j\) are the generators of some algebra, and \(|\psi\rangle\) is some ‘basic’ (‘fiducial’) state. This scheme was proposed by Klauder as far back as 1963 [221], and later it was rediscovered in [225]. A great amount of different families of ‘generalized coherent states’ can be obtained, choosing different algebras and basic states. One of the first examples was related to the \(su(1, 1)\) algebra [225]

\[
|\zeta; k\rangle \sim \exp(\zeta \hat{K}_0)/0\sim \sum_{n=0}^{\infty} \left[\frac{\Gamma(n+2k)}{\Gamma(2k)} \right]^{1/2} \zeta^n|n\rangle,
\]

(53)

where \(k\) is the so-called Bargmann index labelling the concrete representation of the algebra, and \(\hat{K}_0\) is the corresponding raising operator. Evidently, the states (45) and (53) are the same, although their interpretation may be different. Some particular realizations of the state (53) connected with the problem of quantum ‘singular oscillator’ (described by the Hamiltonian \(H = p^2 + x^2 + gx^{-2}\)) were considered in [180, 201]. The ‘generalized phase state’ (45) and its special case (47) can also be considered as coherent states for the groups \(O(2, 1)\) or \(O(3)\), with the ‘displacement operator’ of the form [199]:

\[
\hat{D}_k(z) = \exp \left(z \sqrt{\hat{n}(\hat{h} + \hat{k})} \hat{E}_+ - z^* \hat{E}_- \sqrt{\hat{n}(\hat{h} + \hat{k})} \right).
\]

A comparison of the coherent states for the Heisenberg–Weyl and \(su(2)\) algebras was made in [226] (see also [227]). Coherent states for the group \(SU(n)\) were studied in [220, 228], whereas the groups \(E(n)\) and \(SU(m, n)\) were considered in [229]. Multilevel atomic coherent states were introduced in [230].

The name Barut–Girardello coherent states is used in modern literature for the states which are eigenstates of some non-Hermitian lowering operators. The first example was given in [231], where the eigenstates of the lowering operator \(\hat{K}_-\) of the \(su(1, 1)\) algebra were introduced in the form:

\[
|z; k\rangle = N \sum_{n=0}^{\infty} \frac{z^n|n\rangle}{\sqrt{n!}^2(n + 2k)}
\]

(54)

The corresponding wavepackets in the coordinate representation, related to the problem of nonstationary ‘singular oscillator’, were expressed in terms of Bessel functions in [180].

The first two-dimensional analogues of the Barut–Girardello states, namely, eigenstates of the product of commuting boson annihilation operators \(\hat{a}\hat{b}\),

\[
\hat{a}\hat{b}|\xi, q\rangle = \xi|\xi, q\rangle, \quad \hat{Q}|\xi, q\rangle = q|\xi, q\rangle,
\]

(55)

were introduced by Horn and Silver [232] in connection with the problem of pions production. In the simplified variant these states have the form (actually Horn and Silver considered the infinite-dimensional case related to the quantum field theory):

\[
|\xi, q\rangle = N \sum_{n=0}^{\infty} \frac{\xi^n|q + g, n\rangle}{\sqrt{[n + q]!^2}}
\]

(56)

Operator \(\hat{Q}\) can be interpreted as the ‘charge operator’; for this reason state (56) appeared in [233] under the name ‘charged boson coherent state.’ Joint eigenstates of the operators \(\hat{a}\hat{a}, \hat{a}\hat{a}\), \(\hat{a}\hat{a}\), which generate the angular momentum operators according to (50), were studied in [234]. The states (56) have found applications in quantum field theory [235]. Nonclassical properties of the states (56) (renamed as pair coherent states) were studied in [236]. An example of two-mode \(SU(1, 1)\) coherent states was given in [237]. The generalization of the ‘charged boson’ coherent states (56) in the form of the eigenstates of the operator \(\mu\hat{a}\hat{b} + v\hat{a}\hat{b}\hat{b}\), satisfying the constraint \((\hat{a}^\dagger \hat{a} - \hat{b}^\dagger \hat{b})|\psi\rangle = 0\), was studied in [238]. Nonclassical properties of the even and odd charge coherent states were studied in [239].

The first explicit treatments of the squeezed states as the \(SU(1, 1)\) coherent states were given in studies [140, 240], whose authors considered, in particular, the realization of the \(su(1, 1)\) algebra in terms of the operators:

\[
\hat{K}_s = \hat{a}^\dagger \hat{a}^\dagger/2, \quad \hat{K}_- = \hat{a}^\dagger \hat{a}/2, \quad \hat{K}_3 = (\hat{a}^\dagger \hat{a} + \hat{a} \hat{a}^\dagger)/4.
\]

(57)

If \((\Delta K_3)^2 < |(\hat{K}_3)|/2\) or \((\Delta K_2)^2 < |(\hat{K}_2)|/2\) (where \(\hat{K}_\pm = \hat{K}_1 \pm i\hat{K}_2\)), then the state was named \(SU(1, 1)\) squeezed [140] (in [144], similar states were named amplitude-squared squeezed states). The relations between the squeezed states and the Bogolyubov transformations were considered in [241]. ‘Maximally symmetric’ coherent states have been considered in [242]. \(SU(2)\) and \(SU(1, 1)\) phase states have been constructed in [243]. The algebraic approaches in studying the squeezing phenomenon have been used in [244]. Analytic representations based on the \(SU(1, 1)\) group coherent states and Barut–Girardello states were compared in [245]. \(SU(3)\)-coherent states were considered in [246]. Coherent states defined on a circle and on a sphere have been studied in [247]. For other studies on group and algebraic states and their applications see, e.g., [7, 248, 249].
7. ‘Minimum uncertainty’ and ‘intelligent’ states

For the operators \hat{A} and \hat{B} different from \hat{x} and \hat{p}, the right-hand side of the uncertainty relation (11) depends on the quantum state. The problem of finding the states for which (11) becomes the equality was discussed by Jackiw [50], who showed that it is reduced essentially to solving the equation:

$$(\hat{A} - \lambda)(\hat{A} - \lambda)|\psi\rangle = \lambda(\hat{B} - (\hat{B}))(\psi).$$ \hspace{1cm} (58)

Jackiw found the explicit form of the states minimizing one of several ‘phase–number’ uncertainty relations, namely

$$(\Delta \hat{A})^2(\Delta \hat{C})^2|\psi\rangle = 1 / 4 .$$ \hspace{1cm} (59)

in the form $|\psi\rangle = N \sum_{n=0}^{\infty} (-i)^n L_0^{-1}(\gamma)|n\rangle$, where $L_0^{-1}(\gamma)$ is the modified Bessel function, and λ, γ are some parameters.

Eswaran considered the $\hat{p} – \hat{C}$ pair of operators and solved the equation $(\hat{n} + i\hat{C})(\psi) = \lambda|\psi\rangle$ [197]. If the product $\Delta \hat{A} \Delta \phi$ of the number and phase ‘uncertainties’ remains of the order of 1, then we have the number–phase minimum uncertainty state [250]. The methods of generating the MUS for the operators N, C, S (37) were discussed in [251]. For recent studies see, e.g., [252].

Multimode generalizations of the (Gaussian) MUS were discussed in [253], and their detailed study was given in [254]. Noise minimum states, which give the minimal value of the photon number operator fluctuation σ_n for the fixed values of the lower order moments, e.g., $\langle \hat{a} \hat{a}^\dagger \rangle, \langle \hat{a} \rangle, \langle \hat{a} \rangle$, were considered in [255]. This study was continued in [256], where eigenstates of operator $\hat{a} \hat{a}^\dagger - \xi^2 \hat{a} \hat{a}^\dagger$ were found in the form

$$|\xi; M\rangle = (\hat{a}^\dagger + \xi^2)^M |\xi\rangle_{\text{coh}}.$$ \hspace{1cm} (60)

(These states differ from (31), due to the opposite sign of the term ξ^2). Different families of MUS related to the powers of the bosonic operators were considered in [257]. The eigenstates of the most general linear combination of the operators $\hat{a}, \hat{a}^\dagger, \hat{a}^2, \hat{a}^2$, and $\hat{a}^2 \hat{a}^\dagger$ were studied in [182], where the general concept of algebra eigenstates was introduced. These states were defined as eigenstates of the linear combination $\xi_1 A_1 + \xi_2 A_2 + \cdots + \xi_n A_n$, where A_k are generators of some algebra. In the case of two-photon algebra these states are expressed in terms of the confluent hypergeometric function or the Bessel function, and they contain, as special cases, many other families of nonclassical states [258].

The case of the spin (angular momentum) operators was considered in [259], where the name intelligent states was introduced. The relations between coherent spin states, intelligent spin states, and minimum-uncertainty spin states were discussed in [260]. For recent publications see, e.g., [261]. Nowadays the ‘intelligent’ states are understood to be the states for which the Heisenberg uncertainty relation (11) becomes the equality, whereas the MUS are those for which the ‘uncertainty product’ $\Delta \hat{A} \Delta \hat{B}$ attains the minimal possible value (for arbitrary operators \hat{A}, \hat{B} such states may not exist [50]). The relations between squeezing and ‘intelligence’ were discussed, e.g., in papers [104, 258, 262]. The properties and applications of the $SU(1, 1)$ and $SU(2)$ intelligent states were considered in [263]. The intelligent states for the generators $K_{1,2}$ of the $su(1, 1)$ algebra were named Hermite polynomial states in [264], since they have the form $\tilde{S}(\xi)H_0(\xi\tilde{a}^\dagger)(0)$, thus being finite superpositions of the squeezed number states. Such states were studied in [265]. The minimum uncertainty state for sum squeezing in the form $\tilde{S}(\xi)H_{pq}(\mu\tilde{a}^\dagger, \mu\tilde{a}^\dagger)(00)$ was found in [266]. Here H_{pq} is a special case of the family of two-dimensional Hermite polynomials, which are useful for many problems of quantum optics [67, 120, 267].

8. Non-Gaussian and ‘coherent’ states for nonoscillator systems

There exist different constructions of ‘coherent states’ for a particle moving in an arbitrary potential. MUS whose time evolution is as close as possible to the trajectory of a classical particle have been studied by Nieto and Simmons in a series of papers, beginning with [268, 269]. In [270] ‘coherent’ states were defined as eigenstates of operators like $\hat{A} = f(x) + i\sigma(x)\frac{d}{dx}$. However, such packets do not preserve their forms in the process of evolution, losing the important property of the Schrödinger nonspreading wavepackets.

At least three anharmonic potentials are of special interest in quantum mechanics. The closest to the harmonic oscillator is the ‘spherical oscillator’ potential $x^2 + gx^{-2}$ (also known as the ‘isotonic,’ ‘pseudoharmonical,’ ‘centrifugal’ oscillator, or ‘oscillator with centripetal barrier’). Different coherent states for this potential have been constructed in [180, 201, 269, 271–273].

MUS for the Morse potential $U_0(1 - e^{-ax})^2$ were constructed in [274]; the cases of the Pöschl–Teller and Rosen–Morse potentials, $U_0 \tan^2(ax)$ and $U_0 \tanh^2(ax)$, were considered in [269]. Algebraic coherent states for these potentials, based, in particular, on the algebras $su(1, 1)$ or $so(2, 1)$, have been proposed in [275], for recent constructions see, e.g., [272, 276]. Coherent states for the reflectionless potentials were constructed in [277]. The intelligent states for arbitrary potentials, with concrete applications to the Pöschl–Teller one, were considered recently in [278].

Klauder [279] has proposed a general construction of coherent states in the form

$$|z; \gamma\rangle = \sum_n \frac{z^n}{\sqrt{p_n}} \exp(-ie_n\gamma)|n\rangle, \quad \hat{H}|n\rangle = e_n|n\rangle,$$ \hspace{1cm} (61)

where positive coefficients $\{p_n\}$ satisfy certain conditions, while the discrete energy spectrum $\{e_n\}$ may be quite arbitrary. This construction was applied to the hydrogen atom in [280]. Another special case of states (61) is the Mittag–Leffler coherent state [281]:

$$|z; \alpha, \beta\rangle = N \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{(an + \beta)^n}} |n\rangle.$$ \hspace{1cm} (62)

Penson and Solomon [282] have introduced the state $|q, z\rangle = \varepsilon(q, z\tilde{a}^\dagger)(0)$, where function $\varepsilon(q, z)$ is a generalization of the exponential function given by the relations:

$$d\varepsilon(q, z)/dz = \varepsilon(q, qz), \quad \varepsilon(q, z) = \sum_{n=0}^{\infty} q^{n(n-1)/2} z^n/ n!.$$
The Gaussian exponential form of the coefficients ρ_n in (61) was used in [283] to construct localized wavepackets for the Coulomb problem, the planar rotor and the particle in a box. For the most recent studies see, e.g., [278, 284].

8.1. Coherent states and packets in the hydrogen atom

Introducing the nonscreening Gaussian wavepackets for the harmonic oscillator, Schrödinger wrote in the same paper [1]2

‘We can definitely foresee that, in a similar way, wave groups can be constructed which would round highly quantized Kepler ellipses and are the representation of wave mechanics of the hydrogen electron. But the technical difficulties in the calculation are greater than in the especially simple case which we have treated here.’

Indeed, this problem turned out to be much more complicated than the oscillator one. One of the first attempts to construct the quasiclassical packets along the Kepler orbits was made by Brown [285] in 1973. A similar approach was used in [286]. Different nonscreening and squeezed Rydberg packets were considered in [287].

The symmetry explaining degeneracy of hydrogen energy levels was found by Fock [288] (see also Bargmann [289]): it is $O(4)$ for the discrete spectrum and the Lorentz group (or $O(3, 1)$) for the continuous one. The symmetry combining all the discrete levels into one irreducible representation (the dynamical group $O(4, 2)$) was found in [290] (see also [291]). Different group related coherent states connected to these dynamical symmetries were discussed in [292]. The Kustaanheimo–Stiefel transformation [293], which reduces the three-dimensional Coulomb problem to the four-dimensional constrained harmonic oscillator [294], was applied to obtain various coherent states of the hydrogen atom in [295]. For the most recent publications see, e.g., [272, 296].

8.2. Relativistic oscillator coherent states

One of the first papers on the relativistic equations with internal degrees of freedom was published by Ginzburg and Tamn [297]. The model of ‘covariant relativistic oscillator’ obeying the modified Dirac equation

\[(\gamma_\mu \partial /\partial x_\mu + a_4 \xi_\mu \bar{p}_\mu) + m_0)\psi(x, \xi) = 0, \]

where x is the 4-vector of the ‘centre of mass’, and 4-vector ξ is responsible for the ‘internal’ degrees of freedom of the ‘extended’ particle, was studied by many authors [298].

Coherent states for this model, related to the representations of the $SU(1, 1)$ group and the ‘singular oscillator’ coherent states of [180], have been constructed in [299]. Coherent states of relativistic particles obeying the standard Dirac–Klein–Gordon equations were discussed in [300].

Different families of coherent states for several new models of the relativistic oscillator, different from the Yukawa–Markov type [63], have been studied during the 1990s. Mir-Kasimov [301] constructed intelligent states (in terms of the Macdonald function $K_\nu(x)$) for the coordinate and momentum operators obeying the ‘deformed relativistic uncertainty relation’:

\[[\hat{x}, \hat{p}] = i\hbar \cosh(i\hbar/2mc) \mathrm{d}/\mathrm{d}x. \]

Coherent states for another model, described by the equation

\[i\hbar \partial \psi /\partial t = [a_4 (\hat{p}_4 - i\omega \hat{x}_4) + m_0] \psi \]

and named ‘Dirac oscillator’ in [302] (although similar equations were considered earlier, e.g., in [303]), have been studied in [304]. Aldaya and Guerrero [305] introduced the coherent states based on the modified ‘relativistic’ commutation relations:

\[[\hat{E}, \hat{x}] = -i\hbar \hat{p}/m, \quad [\hat{E}, \hat{p}] = i\omega^2 \hbar \hat{x}, \]

\[[\hat{x}, \hat{p}] = i\hbar (1 + \hat{E}/mc^2). \]

These states were studied in [306].

8.3. Supersymmetric states

The concept of supersymmetry was introduced by Gol’fand and Likhtman [307]. The nonrelativistic supersymmetric quantum mechanics was proposed by Witten [308] and studied in [309]. Its super-simplified model can be described in terms of the Hamiltonian which is a sum of the free oscillator and spin parts, so that the lowering operator can be conceived as a matrix

\[\hat{H} = \hat{a}^\dagger \hat{a} - \frac{1}{2} \sigma_3, \quad \hat{A} = \begin{pmatrix} \hat{a} & 1 \\ 0 & \hat{a}^\dagger \end{pmatrix} \]

(σ_3 is the Pauli matrix). Then one can try to construct various families of states applying the operators like $\exp(i\alpha \hat{A}^\dagger)$ to the ground (or another) state, looking for eigenstates of \hat{A} or some functions of this operator, and so on. The first scheme was applied by Bars and Günaydin [310], who constructed group supercoherent states. The same (displacement operator) approach was used in [311]. The second way was chosen by Aragone and Zypman [312], who constructed the eigenstates of some ‘supersymmetric’ non-Hermitian operators.

Different coherent states for the Hamiltonians obtained from the harmonic oscillator Hamiltonian through various deformations of the potential (by the Darboux transformation, for example) have been studied in [313]. ‘Supercoherent’ and ‘supersqueezed’ states were studied in [314].

8.4. Binomial states

The finite combinations of the first $M + 1$ Fock states in the form [315, 316]

\[|\rho, M; \theta_n\rangle = \sum_{n=0}^{M} \mathbf{c}^{\theta_n} \left[\begin{array}{c} M! \\ n!(M - n)! \end{array} \right] p^n (1 - p)^{M - n} \left[\begin{array}{c} M - n \\ n \end{array} \right] \]

were named ‘binomial states’ in [315] (see also [317]). As a matter of fact, they were studied much earlier in the paper [199]; see equation (47). Binomial states go to the coherent states in the limit $p \to 0$ and $M \to \infty$, provided $pM = \text{const}$, so they are representatives of a wider class of intermediate, or interpolating, states. The special case of $M = 1$ (i.e., combinations of the ground and the first excited states) was named Bernoulli states in [315]. Other ‘intermediate’ states are (they are superpositions of an infinite number of Fock states) logarithmic states [318]

\[|\psi\rangle_{\log} = \mathbf{c} |0\rangle + N \sum_{n=1}^{\infty} \sqrt[n]{n} |n\rangle \]

(66)
and negative binomial states [319]

$$|\xi, \mu; \theta_n\rangle = \sum_{n=0}^{\infty} e^{\theta_n} \left(1 - \xi\right)^{\mu \pi_n} \left(\frac{\mu + \xi}{\Gamma(\mu)\eta!}\right)^{1/2} |n\rangle, \quad (67)$$

where $\mu > 0$, $0 \leq \xi < 1$. One can check that for $\theta_n = n\theta$ the state (67) coincides with the generalized phase state (45) introduced in [199, 200]. Mixed quantum states with negative binomial distributions of the diagonal elements of the density matrix in the Fock basis appeared in the theory of photodetectors and amplifiers in [320].

Reciprocal binomial states

$$|\Phi; M\rangle = N \sum_{n=0}^{M} e^{in\phi} \sqrt{n!(M-n)!} |n\rangle \quad (68)$$

were introduced in [321], and schemes of their generation were discussed in [322]. Intermediate number squeezed states $S(z)\eta, M\rangle$ (where $\eta, M\rangle$ is the binomial state) were introduced in [323] and generalized in [324]. Multinomial states have been introduced in [325]. Barnett [326] has introduced the modification of the negative binomial states of the form:

$$|n, \eta, (M+1)\rangle \sim \sum_{n=0}^{\infty} \frac{n!}{(M-n)!} \eta^{M+1} (1 - \eta)^{n-M} |n\rangle. \quad (69)$$

The binomial coherent states

$$|\lambda; M\rangle \sim (\hat{a}^\dagger + \lambda)^M |0\rangle \sim \sum_{n=0}^{M} \frac{\lambda^{M-n}|n\rangle}{(M-n)!\sqrt{n!}},$$

(here λ is real and $\hat{D}(\lambda)$ is the displacement operator) were studied in [327, 328]. State (69) is the eigenstate of operator $\hat{a}^\dagger \hat{a} + \lambda \hat{a}$ with the eigenvalue M. The superposition states $|\lambda; M\rangle = \exp(i\phi)|\lambda; M\rangle$ were studied in [329]. Replacing operator \hat{a}^\dagger in the right-hand side of (69) by the spin raising or lowering operators \hat{S}_z one arrives at the binomial squeezed coherent state [328]. For other studies on binomial, negative binomial states and their generalizations see, e.g., [206, 330].

8.5. Kerr states and 'macroscopic superpositions'

The main suppliers of nonclassical states are the media with nonlinear optical characteristics. One of the simplest examples is the so-called Kerr nonlinearity, which can be modelled in the single-mode case by means of the Hamiltonian $\hat{H} = \omega\hat{n} + \chi \hat{n}^2$ (where $\hat{n} = \hat{a}^\dagger \hat{a}$). In 1984, Tanaš [331] demonstrated a possibility of obtaining squeezing using this kind of nonlinearity. In 1986, considering the time evolution of the initial coherent state under the action of the Kerr Hamiltonian, Kitagawa and Yamamoto [250] showed that the states whose initial shapes in the complex phase plane α were circles (these shapes are determined by the equation $Q(\alpha) = \text{const}$, where the Q-function is defined as $Q(\alpha) = \langle\alpha|\beta|\alpha\rangle$), are transformed to some 'crested states', with essentially reduced fluctuations of the number of photons: $\Delta n \sim \langle n\rangle^{1/3}$ (whereas in the case of the squeezed states one has $\Delta n \geq \langle n\rangle^{1/3}$).

The behaviour of the Q-function was also studied by Milburn [332], who (besides confirming the squeezing effect) discovered that under certain conditions, the initial single Gaussian function is split into several well-separated Gaussian peaks. Yurke and Stoler [333] gave the analytical treatment to this problem, generalizing the nonlinear term in the Hamiltonian as \hat{H}^2 (k being an integer). The initial coherent state is transformed under the action of the Kerr Hamiltonian to the Titulaer–Glauber state (32)

$$|\alpha; t\rangle = \exp(-|\alpha|^2/2) \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} \exp(-i\chi n^{k}t) |n\rangle, \quad (70)$$

where $\alpha = \alpha \exp(-i\omega t)$. Yurke and Stoler noticed that for the special value of time $t_s = \pi/2\chi$, state (70) becomes the superposition of two or four coherent states, depending on the parity of the exponent k:

$$|\alpha; t_s\rangle = \left\{ \begin{array}{ll}
\frac{\exp(-i\pi/4)|\alpha_+\rangle + \exp(i\pi/4)|\alpha_-\rangle}{\sqrt{2}}, & \text{even} \\
\frac{\left|i\alpha_+\right| - |\alpha_+| + |\alpha_-| - i|\alpha_-|\rangle}{2}, & \text{odd}
\end{array} \right. \quad (71)$$

Notice that the first superposition (for k even) is different from the even or odd states (36). The even and odd states arise in the case of the two-mode nonlinear interaction $\hat{H} = \omega(\hat{a}^\dagger \hat{a} + b^\dagger b) + \chi (\hat{a}^\dagger b + b^\dagger \hat{a})^2$ considered by Mecozzi and Tombesi [334]. In this case, the initial state $|0\rangle_{a\beta}$ is transformed at the moment $t_s = \pi/4\chi$ to the superposition:

$$|\text{out}, t_s\rangle = \frac{1}{2} \left(|\beta_1\rangle_{\beta_1} + |\beta_2\rangle_{\beta_2} \right) + \frac{1}{2} \left(|\beta_1\rangle_{-\beta_2} + |\beta_2\rangle_{-\beta_1} \right).$$

In the course of time, such 'macroscopic superpositions' of quantum states attracted great attention, being considered as simple models of the 'Schrödinger cat states' [335]. In particular, they were studied in detail in [336]. Other superpositions of quantum states of the electromagnetic field, which can be created in a cavity due to the interaction with a beam of two-level atoms passing one after another, were considered in [337]. Some of them, described in terms of specific solutions of the Jaynes–Cummings model [338], were named tangent and cotangent states in [339]. The squeezed Kerr states were analysed in [340].

Searching for the states giving maximal squeezing, various superpositions of states were considered. In particular, the superpositions of the Fock states $|0\rangle$ and $|1\rangle$ (Bernoulli states) were studied in [315, 341], similar superpositions (plus state $|2\rangle$) were studied in [342]. The superposition of two squeezed vacuum states was considered in [343]. The superpositions of the coherent states $|\alpha e^{i\omega}\rangle$ and $|\alpha e^{-i\omega}\rangle$ were considered in [344]. Entangled coherent states have been introduced by Sanders in [345]. Their generalizations and physical applications have been studied in [346]. Various superpositions of coherent, squeezed, Fock, and other states, as well as methods of their generation, were considered in [347].

Representations of nonclassical states (including quadrature squeezed and amplitude squeezed) via linear integrals over some curve C (closed or open, infinite or finite) in the complex plane of parameters,

$$|g\rangle = \int_C g(z)|z\rangle \, dz, \quad (72)$$

were studied in [348]. Originally, $|z\rangle$ was the coherent state, but it is clear that one may choose other families of states, as well.
8.6. Photon-added states

An interesting class of nonclassical states consists of the photon-added states

$$|\psi, m\rangle_{\text{add}} = N_m \hat{a}^m |\psi\rangle,$$

(73)

where $|\psi\rangle$ may be an arbitrary quantum state, m is a positive integer—the number of added quanta (photons or phonons), and N_m is a normalization constant (which depends on the basic state $|\psi\rangle$). Agarwal and Tara [349] introduced these states for the first time as the photon-added coherent states (PACS) $|\alpha, m\rangle$, identifying $|\psi\rangle$ with Glauber's coherent state $|\alpha\rangle$ (5). These states differ from the displaced number state (31). Taking the initial state $|\psi\rangle$ in the form of a squeezed state, one obtains photon-added squeezed states [350]. The even/odd photon-added states were studied in [351]. One can easily generalize the definition (73) to the case of mixed quantum states (36)

$$|\psi\rangle = \sum_{m=0}^{\infty} c_m |\psi, m\rangle_{\text{add}},$$

(74)

which can also be expressed as the superposition of k coherent states uniformly distributed along the circle:

$$|\psi; k, j\rangle = N_k \sum_{n=0}^{k-1} \exp(-2\pi inj/k) \exp(2\pi in/k).$$

(75)

Such orthogonal 'circular' states were studied in [364]. The difference between the Bialynicki-Birula states (33) and states (75) is in the 'weights' of each coherent state in the superposition. In the case of (33) these weights are different, to ensure the Poissonian photon statistics, whereas in the 'circular' case all the coefficients have the same absolute value, resulting in non-Poissonian statistics. Eigenstates of the operator $|\mu + \nu \rangle \langle \mu|$ were considered in [365] (with the emphasis on the case $k = 2$). Eigenstates of products of annihilation operators of different modes, $a^\dagger_\mu \cdots a^\dagger_\nu \langle \eta | \eta \rangle$, have been found in [366] in the form of finite superpositions of products of coherent states. For example, in the two-mode case one has (M is an integer):

$$|\eta\rangle = \sum_{n=0}^{M-1} c_j \alpha \exp\left[\frac{2\pi i n(M + 1)}{KM}\right] \otimes \beta \exp\left(-2\pi i \frac{n}{1M}\right), \quad \eta = \alpha^k \beta^l.$$

8.8. 'Intermediate' and 'polarization' states

After the papers by Pegg and Barnett [369], where the finite-dimensional 'truncated' Hilbert space was used to define the phase operator, various 'truncated' versions of nonclassical states have been studied. Properties of the state $\sum_{n=0}^{M-1} \langle n | |\mu + \nu \rangle \langle \mu | n \rangle$ were discussed in [204, 370]. Quasiphoton phase states $\sum_{n=0}^{M-1} \exp(\imath (\nu + \mu)n \pi) |n \rangle$, where $|n\rangle$ is the squeezed number state, were considered in [371]. The 'finite-dimensional' and 'discrete' coherent states were considered in [372]. The generalized geometric state $|\gamma; M\rangle = \sum_{n=0}^{M-1} \chi^{n/2} |n \rangle$ was introduced in [373], and its even variant in [374]. In the limit $M \to \infty$ this state goes to the phase coherent states (43) (called geometric states in [373, 374], due to the geometric progression form of the coefficients in the Fock basis). For other examples see [375].

The Laguerre polynomial state $L_M(-y \hat{R}) |0\rangle$, where $\hat{R} = \hat{a}^\dagger \sqrt{N + 1}$, was introduced in [376]. A more general definition $L_M(\xi \hat{J}_k) |0\rangle$ (where \hat{J}_k is one of the generators of the su(1, 1) algebra, and $|k\rangle$ is the discrete basis state labelled by the representation index k) has been given in [377]. The properties of these states were studied in [378].

Jacobi polynomial states were introduced in [354]. Several modifications of the binomial distributions have been used to define Pólya states [379], hypergeometric states [380], and so on. For example, the states introduced in [381]

$$|N, \alpha, \beta\rangle \sim \sum_{n=0}^{N} \binom{(\alpha + 1)n(\beta + 1)}{N} \frac{1}{n!(N-n)!} |n\rangle$$

are related to the Hahn polynomials. They contain, as special or limit cases, usual binomial and negative binomial states.

9. 'Quantum deformations' and related states

9.1. Para-coherent states

In 1951, Wigner [196] pointed out that to obtain an equidistant spectrum of the harmonic oscillator, one could use, instead of...
the canonical bosonic commutation relation (3), more weak conditions:
\[
[a_\epsilon, \hat{H}] = a_\epsilon, \quad [\hat{a}_\epsilon^\dagger, \hat{H}] = -\hat{a}_\epsilon^\dagger
\]
\[
\hat{H} = (\hat{a}_\epsilon^\dagger \hat{a}_\epsilon + \hat{a}_\epsilon \hat{a}_\epsilon^\dagger) / 2.
\]

Then the spectrum of the oscillator becomes (in the dimensionless units) \(E_n = n + \epsilon \), \(n = 0, 1, \ldots \), with an arbitrary possible lowest energy \(\epsilon \) (for the usual oscillator \(\epsilon = 1/2 \)). Wigner's observation is closely related to the problem of parastatistics (intermediate between the Bose and Fermi ones) [382], which was studied by many authors in the 1950s and 1960s; see [383, 384] and references therein. In 1978, Sharma et al [385] introduced para-Bose coherent states as the eigenstates of the operator \(\hat{a}_\epsilon \) satisfying the relations (76)

\[
[|\alpha\rangle]_\epsilon \sim \sum_{n=0}^{\infty} \left\{ \Gamma \left(\left[\frac{n}{2} \right] + 1 \right) / \sqrt{n! F(n)} \right\} \left(\frac{\alpha}{\sqrt{2}} \right)^n |n\rangle_\epsilon,
\]

where \(|n\rangle_\epsilon \sim \hat{a}_\epsilon^n |0\rangle_\epsilon \) is the ground state, and \(\left[[n] \right] \) means the greatest integer less than or equal to \(n \). Introducing the Hermitian 'quadrature' operators in the same manner as in (19) (but with a different physical meaning), one can check that \(\Delta x_\epsilon \Delta p_\epsilon = [\langle \hat{x}_\epsilon, \hat{p}_\epsilon \rangle] / 2 \) in the state (77), i.e., this state is 'illuminant' for the operators \(\hat{x}_\epsilon \) and \(\hat{p}_\epsilon \) [386].

Another kind of 'para-Bose operator' was considered in [387] on the basis of a nonlinear transformation of the canonical bosonic operators:

\[
\hat{A}_\epsilon = F^n(\hat{a}_\epsilon + 1), \quad \hat{A}^\dagger_\epsilon = \hat{a}_\epsilon^\dagger F(\hat{a}_\epsilon + 1), \quad \hat{n} = \hat{a}_\epsilon^\dagger \hat{a}_\epsilon.
\]

The transformed operators satisfy the relations:

\[
[\hat{A}, \hat{n}] = \hat{A}, \quad [\hat{A}^\dagger, \hat{n}] = -\hat{A}^\dagger, \quad \hat{n} = \hat{a}_\epsilon^\dagger \hat{a}_\epsilon.
\]

Defining the 'para-coherent state' \(|\lambda\rangle_\epsilon \) as an eigenstate of the operator \(\hat{A} \), \(\hat{A}|\lambda\rangle_\epsilon = \lambda |\lambda\rangle_\epsilon \), one obtains:

\[
|\lambda\rangle_\epsilon = N \left(0 + \sum_{n=1}^{\infty} \frac{\lambda^n |n\rangle}{\sqrt{n! F^n(n)} F^n(1)} \right),
\]

Evidently, the choice \(F(n) = \sqrt{n + 2k - 1} \) reduces the state (80) to the Barut–Girardello state (54). Nowadays the states (80) are known mainly under the name nonlinear coherent states (NLCS); see section 9.4. Varios 'para-states' were considered in [388–390]. In particular, the generalized 'para-commutator relations'\n
\[
[\hat{n}, \hat{a}_\epsilon^\dagger] = \hat{a}_\epsilon^\dagger, \quad [\hat{n}, \hat{a}_\epsilon] = -\hat{a}_\epsilon,
\]

\[
\hat{a}_\epsilon^\dagger \hat{a}_\epsilon = \phi(\hat{n}), \quad \hat{a}_\epsilon \hat{a}_\epsilon^\dagger = \phi(\hat{n} + 1)
\]

have been resolved in [389] by means of the nonlinear transformation to the usual bosonic operators \(\hat{b}_\epsilon, \hat{b}^\dagger_\epsilon \)

\[
\hat{a}_\epsilon = \sqrt{\frac{\phi(\hat{n} + 1)}{\hat{n} + 1}} \hat{b}_\epsilon, \quad \hat{A}_\epsilon = \frac{\hat{n} + 1}{\phi(\hat{n} + 1)} \hat{a}_\epsilon, \quad |\lambda, \hat{A}_\epsilon\rangle = 1,
\]

and coherent states were defined as \(|\alpha\rangle \sim \exp(\alpha \hat{A}_\epsilon^\dagger) / 0 \).

9.2. \(q \)-coherent states

One of the most popular directions in mathematical physics of the last decades of the 20th century was related to various deformations of the canonical commutation relations (3) (and others). Perhaps, the first study was performed in 1951 by Iwata [391], who found eigenstates of the operator \(\hat{a}_q^\dagger \hat{a}_q \), assuming that \(\hat{a}_q \) and \(\hat{a}_q^\dagger \) satisfy the relation (he used letter \(\beta \) instead of \(q \)):

\[
\hat{a}_q^\dagger \hat{a}_q^\dagger - q \hat{a}_q^\dagger \hat{a}_q = 1, \quad q = \text{const}.
\]

Twenty five years later, the same relation (82) and its generalizations to the case of several dimensions were considered by Arik and Coon [392, 393], Kuryshkin [394], and by Jannussis et al [395]. A realization of the commutation relation (82) in terms of the usual bosonic operators \(\hat{a}_\epsilon, \hat{a}_\epsilon^\dagger \) by means of the nonlinear transformation was found in [395]:

\[
\hat{a}_q = F(\hat{a}_\epsilon)\hat{a}_\epsilon, \quad \hat{n} = \hat{a}_\epsilon^\dagger \hat{a}_\epsilon.
\]

For real functions \(F(n) \) equation (82) is equivalent to the recurrence relation \((n+1)F(n+1)^2 - qnF(n-1)^2 = 1 \), whose solution is

\[
F(n) = \left([n + 1]_q / (n + 1) \right)^{1/2},
\]

where symbol \([n]_q \) means:

\[
[n]_q = (q^n - 1) / (q - 1) = 1 + q + \cdots + q^{n-1}.
\]

The operators given by (83) obey the relations (79). Using the transformation (83) one can obtain the realizations of more general relations than (82):

\[
\hat{A}_\epsilon \hat{A}_q^{\dagger} = 1 + \sum_{k=1}^{K} q_k \hat{A}_q^{k\dagger} \hat{A}_q.
\]

The corresponding recurrence relations for \(F(n) \) were given in [395].

Coherent states of the pseudo-oscillator, defined by the 'inverse' commutation relation \([\hat{a}, \hat{a}^\dagger] = -1 \), were studied in [396]. These states satisfy relations (5) and (4), but in the right-hand side of (5) one should write \(-\alpha\) instead of \(\alpha \).

The \(q \)-coherent state was introduced in [393, 395] as

\[
|\alpha\rangle_q = \exp_q(-|\alpha|^2/2) \exp_q(\alpha \hat{a}_q^\dagger) |0\rangle_q,
\]

where

\[
\exp_q(x) = \sum_{n=0}^{\infty} \frac{x^n}{[n]_q!}, \quad [n]_q! = [n]_q [n - 1]_q \cdots [1]_q.
\]

Assuming other definitions of the symbol \([n]_q\), but the same equations (83) and (84), one can construct other 'deformations' of the canonical commutation relations. For example, making the choice

\[
[x]_q = (q^x - q^{-x}) / (q - q^{-1})
\]

one arrives at the relation

\[
\hat{a}_q \hat{a}_q^{\dagger} - q \hat{a}_q^\dagger \hat{a}_q = q \hat{n}
\]

considered by Biedenharn in 1989 in his famous paper [397], which gave rise (together with several other publications [398])
The usual coherent states are generated from the vacuum by families of \(q \)-multimode \(k \)-photon states, as elucidated in [389, 409].

It has the following structure:

\[
|\alpha\rangle_{q-k} = N \sum_{n=0}^{\infty} \alpha^n \left(\frac{(2n + 1)_{2n}}{(2n)!} \right)^{1/2} |2n\rangle.
\]

(89)

Two families of coherent states for the difference analogue of the harmonic oscillator have been studied in [401], and one of them coincided with the \(q \)-coherent states. The \('\text{quasicoherent}' state \(\exp(-z^2/2) \) was considered in [402]. Coherent states of the two-parameter quantum algebra \(su_q(2) \) have been introduced in [403], on the basis of the definition:

\[
[x]_{q-k} = (q^{-p} - p^{-1})(q - p^{-1}).
\]

Analogous construction, characterized by the deformations of the form

\[
\hat{a}^\dagger \hat{a} = q_1^{\alpha_1} \hat{a}^\dagger \hat{a} + q_2^{\alpha_2} \hat{a}^\dagger \hat{a} + q_2^{\alpha_2} \hat{a}^\dagger \hat{a} + q_1^{\alpha_1} \hat{a}^\dagger \hat{a},
\]

\[
|n\rangle = (q_1^{\alpha_1} - q_2^{\alpha_2})/(q_1 - q_2).
\]

has been studied in [404] under the name ‘Fibonacci oscillator.’ Even and odd \(q \)-coherent states have been studied in [405]. The \(q \)-binomial states were considered in [406]. Multimode \(q \)-coherent states were studied in [407]. Various families of \('q\)-states’, including \(q \)-analogues of the ‘standard sets’ of nonclassical states, have been studied in [186,408]. Interrelations between ‘para’- and ‘\(q \)-coherent’ states were elucidated in [389,409].

9.3. Generalized \(k \)-photon and fractional photon states

The usual coherent states are generated from the vacuum by the displacement operator \(\hat{U}_1 = \exp(z^* \hat{a} - z \hat{a}) \), whereas the squeezed states are generated from the vacuum by the squeeze operator \(\hat{U}_2 = \exp(z \hat{a}^\dagger - z^* \hat{a}) \). It seems natural to suppose that one could define a much more general class of states, acting on the vacuum by the operator \(\hat{U}_k = \exp(z \hat{a}^\dagger - z^* \hat{a}) \). However, such a simple definition leads to certain troubles [410], for instance, the vacuum expectation value \(\langle 0 | \hat{U}_k | 0 \rangle \) has zero radius of convergence as a power series with respect to \(z \), for any \(k > 2 \). Although this phenomenon was considered as a mathematical artefact in [411], many people preferred to modify the operators \(\hat{a}^\dagger \) and \(\hat{a} \) in the argument of the exponential in such a way that no questions on the convergence would arise.

One possibility was studied in a series of papers [412]. Instead of a simple power \(\hat{a}^\dagger \) in \(\hat{U}_k \), it was proposed to use the \(k \)-photon generalized boson operator (introduced in [384])

\[
\hat{A}_{(k)} = \left(\left(\begin{array}{c} \hat{a}^\dagger \\ \hat{a} \end{array} \right) \left(\begin{array}{c} \hat{a} \end{array} \right) \right)^{1/2} (\hat{a}^\dagger)^k \hat{n} = \hat{a}^\dagger \hat{a},
\]

(90)

which satisfies the relations (note that \(\hat{A}_{(1)} = \hat{a} \), but \(\hat{A}_{(k)} \neq \hat{a}^k \) for \(k \geq 2 \)):

\[
\begin{align*}
\hat{A}_{(k)} & = \hat{A}_{(k)} \hat{A}_{(k)}^\dagger, \\
[\hat{a}, \hat{A}_{(k)}] & = -k \hat{A}_{(k)}.
\end{align*}
\]

(91)

The related concept of coherent and squeezed fractional photon states was used in [413].

Bužek and Jex [414] used Hermitian superpositions of the operators \(\hat{A}_{(k)} \) and \(\hat{A}_{(k)}^\dagger \) in order to define the \(k \)-th order squeezing in the frameworks of the Walls–Zoller scheme (30). The multiphoton squeezing operator can be defined as \(\hat{S}_{(k)} = \exp(z \hat{A}_{(k)} \hat{A}_{(k)}^\dagger - \hat{z} \hat{A}_{(k)} \hat{A}_{(k)}^\dagger) \). As a matter of fact, we have an infinite series of the products of the operators \((\hat{a}^\dagger)^n \hat{a}^m \) and their Hermitianally conjugated partners in the argument of the exponential function. The generic multiphoton squeezed state can be written as \(|\alpha, z\rangle_{(k)} = \hat{D}(\alpha) \hat{S}_{(k)}(z) |\psi\rangle \) (in the cited papers the initial state \(|\psi\rangle \) was assumed to be the vacuum state). An alternative definition (in the simplest case of \(\alpha = \psi = 0 \))

\[
|\alpha, z\rangle_{(k)} = \exp(-|z|^2/2) \sum_{n=0}^{\infty} \frac{z^n}{n!} \hat{A}_{(k)}^n |0\rangle
\]

(92)

results in the superposition of the states with 0, \(k \), 2\(k \),\ldots photons of the form:

\[
|\alpha, z\rangle_{(k)} = \exp(-|z|^2/2) \sum_{n=0}^{\infty} \frac{z^n}{\sqrt{n!}} |kn\rangle.
\]

(93)

9.4. Nonlinear coherent states

The NLCS were defined in [415,416] as the right-hand eigenstates of the product of the boson annihilation operator \(\hat{a} \) and some function \(f(\hat{n}) \) of the number operator \(\hat{n} \):

\[
f(\hat{n})\hat{a}|\alpha, f\rangle = \alpha |\alpha, f\rangle.
\]

(94)

Actually, such states have been known for many years under other names. The first example is the phase state (43) or its generalization (45) (known nowadays as the negative binomial state or the SU(1, 1) group coherent state), for which \(f(n) = [(1 + n)/(1 + n + k)]^{1/2} \). The decomposition of the NLCS over the Fock basis has the form (80), consequently, NLCS coincide with ‘para-coherent states’ of [387]. Many nonclassical states turn out to be eigenstates of some ‘nonlinear’ generalizations of the annihilation operator. It has already been mentioned that the ‘Barut–Girardello states’ belong to the family (80). Another example is the photon-added state (73), which corresponds to the nonlinearity function \(f(n) = 1 - m/(1 + n) \) [417]. The physical meaning of NLCS was elucidated in [415,416], where it was shown that such states may appear as stationary states of the centre-of-mass motion of a trapped ion [415], or may be related to some nonlinear processes (such as a hypothetical ‘frequency blue shift’ in high intensity photon beams [416]). Even and odd NLCS, introduced in [418], were studied in [419], and applications to the ion in the Paul trap were considered in [420]. Further generalizations, namely, NLCS on the circle, were given in [421] (also with applications to the trapped ions). Nonclassical properties of NLCS and their generalizations have been studied in [422,423].

10. Concluding remarks

We see that the nomenclature of nonclassical states studied by theoreticians for seventy five years (most of them appeared in the last thirty years) is rather impressive. Now the main
10.1. Generation and detection of nonclassical states

The first proposals on different schemes of generating ‘the most nonclassical’ n-photon (Fock) states appeared in [424]. The problem of creating Fock states and their arbitrary superpositions in a cavity (in particular, via the interaction between the field and atoms passing through the cavity), named quantum state engineering in [425], was studied, e.g., in [425,426]. Different methods of producing ‘cat’ states were proposed in [427]. The use of beamsplitters to create various types of nonclassical states was considered in [354,428]. The problem of generating the states with ‘holes’ in the photon-number distribution was analysed in [429]. A possibility of creating nonclassical states in a cavity with moving mirrors (which can mimic a Kerr-like medium) was studied in [430] (for a detailed review of studies on the classical and quantum electrodynamics in cavities with moving boundaries, with the emphasis on the dynamical Casimir effect, see [431]). The results of the first experiments were described in [432] (nonclassical states of the electromagnetic field inside a cavity) and [433] (nonclassical motional states of trapped ions). For details and other proposals see, e.g., [6,434,435]. Various aspects of the problem of detecting quantum states and their ‘recognition’ or reconstruction were treated in [436–438].

Different schemes of the conditional generation of special states (in cavities, via continuous measurements, etc) were discussed, e.g., in [439]. Several specific kinds of quantum states became popular in the last decade. Dark states [440] are certain superpositions of the atomic eigenstates, whose typical common feature is the existence of some sharp ‘dips’ in the spectra of absorption, fluorescence, etc, due to the destructive quantum interference of transition amplitudes between different energy levels involved. These states are connected with the NLCS [415]. For reviews and references see, e.g., [441,442]. Greenberger–Horne–Zeilinger states (or GHZ-states) [443], which are certain states of three or more correlated spin-½ particles, are popular in the studies related to the EPR-paradox, Bell inequalities, quantum teleportation, and so on. For methods of their generation and other references see, e.g., [444].

10.2. Applications of nonclassical states in different areas of physics

The squeezed and “cat” states in high energy physics were considered in [445]. Applications of the squeezed and other nonclassical states to cosmological problems were studied in [446]. Squeezed and ‘cat’ states in Josephson junctions were considered in [447]. Squeezed states of phonons and other bosonic excitations (polaritons, excitons, etc) in condensed matter were studied in [448]. Spin-coherent states were used in [449]. Nonclassical states in molecules were studied in [450]. Nonclassical states of the Bose–Einstein condensate were considered in [435,451].

Acknowledgments

I am grateful to Professors V I Man’ko and S S Mizrahi for valuable discussions. This work has been done under the full financial support of the Brazilian agency CNPq.

References

[1] Schrödinger E 1926 Der stetige Übergang von der Mikro- zur Makromechanik Naturwissenschaften 14 664–6
R18
Nonclassical states in quantum optics

Ardolino H F and George T F 1993 Squeezing in resonance fluorescence and Schrödinger’s uncertainty relation Physica A 222 330–46

Jannussis A and Bartzis V 1987 General properties of the squeezed states Nuovo Cimento B 100 633–50

R20
Nonclassical states in quantum optics

Mizrahi S S and Galetti D 1988 On the equivalence between the wave packet phase space representation (WPSSR) and the phase space generated by the squeezed states *Physica A* **153** 567–72

Caves C M and Drummond P D 1994 Quantum limits on bosonic communication rates *Rev. Mod. Phys.* **66** 481–537

Wünsche A 1996 The complete Gaussian class of quasiprobabilities and its relation to squeezed states and their discrete excitations *Quantum Semiclass. Opt.* **8** 343–79

[201] Paul H 1974 Phase of a microscopic electromagnetic field and its measurement Fortschr. Phys. 22 657–89

[204] Wigner E P 1951 Do the equations of motion determine the quantum mechanical commutation relations Phys. Rev. 77 149–62

[208] Lukš A and Perinová V 1994 Presumable solutions of atomic coherent states and asymptotic behavior of symmetric top rotating bodies Nuovo Cimento B 159 143–60
[214] Leće C T 1997 Application of Klyshko’s criterion for many-atom system in terms of coherent boson states J. Mod. Opt. 44 225–64
[227] Ducloy M 1975 Application du formalisme des états cohérentes de moment angulaire a quelques problèmes de physique atomique J. Physique 36 927–41
[243] Vourdas A 1990 SU(2) and SU(1,1) phase states Phys. Rev. A 41 1653–61

[244] Bužek V 1990 SU(1,1) squeezing of SU(1,1) generalized coherent states J. Mod. Opt. 37 303–16

[250] Basu D 1999 The coherent states of the SU(1,1) group and a class of associated integral transforms Proc. R. Soc. A 455 975–89

[265] Brif C and Mann A 1997 Generation of single-mode SU(1,1) intelligent states and an analytic approach to their quantum statistical properties Quantum Semiclass. Opt. 9 899–902

[298] Yukawa H 1953 Structure and mass spectrum of elementary
Markov M A 1956 On dynamically deformable form factors
in the theory of elementary particles Nuovo Cimento
(Suppl.) 3 670–72
Ginzburg V L and Man’ko V I 1965 Relativistic oscillator
models of elementary particles Nucl. Phys. 74 577–88
Feynman R P, Klsinger M and Ravndal F 1971 Current
matrix elements from a relativistic quark model Phys. Rev.
D 3 2706–32
Kim Y S and Noz M E 1973 Covariant harmonic oscillators
and quark model Phys. Rev. D 8 3521–7
Kim Y S and Wigner E P 1980 Covariant phase-space
representation for harmonic oscillator Phys. Rev. A 38
1159–67
Quasipotential models of a relativistic oscillator Theor.
Math. Phys. 44 592–602
[300] Ternov I M and Bagrov V G 1983 On coherent states of
[301] Mir-Kasimov R M 1991 SU1,1 (1, 1) and the relativistic
[303] Itô D, Mori K and Carriere E 1967 An example of dynamical
systems with linear trajectory Nuovo Cimento A 51
1119–21
Choi Y M A 1974 Potential approach to spinor quarks Nuovo
Cimento A 23 550–6
[304] Nagomi Y and Toyama F M 1996 Coherent state of the Dirac
oscillator Can. J. Phys. 74 114–21
Rozmej P and Arvieu R 1999 The Dirac oscillator. A
relativistic version of the Jaynes–Cummings model J.
[305] Aldaya V and Guerrero J 1995 Canonical coherent states for
the relativistic harmonic oscillator J. Math. Phys. 36
3191–9
and massive relativistic harmonic oscillators Phys. Lett. A
219 33–40
[307] Gol’fand Y A and Likhtman E P 1971 Extension of the
algebra of Poincare group generators and violation of P
invariance JETP Lett. 13 323–6
Phys. B 188 513–54
[309] Salomonson P and van Holten J W 1982 Fermionic
coordinates and supersymmetry in quantum mechanics Nucl.
Phys. B 196 509–31
Cooper F and Freedman B 1983 Aspects of supersymmetric
De Crombrugghe M and Rittenberg V 1983 Supersymmetric
[310] Bars I and Gúnaydin M 1983 Unitary representations of
states for the harmonic oscillator representations of the
29 1634–64
Orszag M and Salamon S 1988 Squeezing and minimum
uncertainty states in the supersymmetric harmonic
[312] Aragone C and Zypman F 1986 Supercoherent states J.
Math. Phys. 19 2267–79
[313] Fukai T and Aizawa N 1993 Shape-invariant potentials and
an associated coherent state Phys. Lett. A 180 308–13
Fernández D J, Hussin V and Nieto L M 1994 Coherent
states for isospectral oscillator Hamiltonians J. Phys. A:
Math. Gen. 27 3547–64
Bagrov V G and Samsonov B F 1996 Coherent states for
anharmonic oscillator Hamiltonians with equidistant and
1011–23
Fu H C and Sasaki R 1996 Generally deformed oscillator,
isospectral oscillator system and Hermitian phase operator
Fernández D J and Hussin V 1999 Higher-order SUSY,
linearized nonlinear Heisenberg algebras and coherent
Junker G and Roy P 1999 Non-linear coherent states
associated with conditionally exactly solvable problems
Phys. Lett. A 257 113–19
Samsonov B F 2000 Coherent states for transparent potentials
Kosteckevey A, Man’ko V I, Nieto M M and Trua D R
1993 Supersymmetry and a time-dependent Landau
Kosteckevey A, Nieto M M and Trua D R 1996
Beratü-Lauzière Y and Hussin V 1993 Comments on the
definitions of coherent states for the SUSY harmonic
Blum R and Kosteckevey A V 1994 Atomic supersymmetry,
Rydberg wave-packets, and radial squeezed states Phys.
Rev. A 49 4628–40
Bergeron H and Valance A 1995 Overcomplete basis for
one-dimensional Hamiltonians J. Math. Phys. 36
1572–92
Jayaraman J, Rodrigues R D and Vaidya A N 1999 A SUSY
formulation a la Witten for the SUSY isotonic oscillator
32 6643–52
[315] Stoler D, Saleh B E A and Teich M C 1985 Binomial states
[316] Lee C T 1985 Photon antibunching in a free-electron laser
[317] Dattoli G, Gallardo J and Torre A 1987 Binomial states of the
B 4 185–7
of the radiation field J. Mod. Opt. 35 719–25
bimodal field distribution on Rabi oscillations Opt.
Commun. 70 21–4
[320] Matsuo K 1999 Glauber–Sudarshan P-representation of
negative binomial states Phys. Rev. A 41 519–22
[321] Shepherd T J 1981 A model for photodetection of
incoherently coupled, steady-state optical amplifier J.
[323] Barnett S M and Pegg D T 1996 Phase measurement by
projection synthesis Phys. Rev. Lett. 76 4148–50
44 2135–48
[325] Moussa M H Y and Baseia B 1998 Generation of the
reciprocal-binomial state Phys. Lett. A 238 223–6
number-squeezed state of the quantized radiation field
Mod. Phys. Lett. B 9 1673–83
[327] Roy B 1998 Nonclassical properties of the even and odd
intermediate number-squeezed states Mod. Phys. Lett.
B 12 23–33
[328] Fu H C and Sasaki R 1997 Negative binomial and
bimodal states: probability distribution and coherent
state J. Math. Phys. 38 3968–401
[329] Barnett S M 1998 Negative binomial states of the quantized
radiation field J. Mod. Opt. 45 2201–5
[330] Fu H, Feng Y and Solomon A I 2000 States interpolating
between number and coherent states and their interaction

[341] Schrödinger E 1935 Die gegenwärtige Situation in der Quantenmechanik Naturwissenschaften 23 807–12

Janesky E T and Cummings F W Comparison of quantum and semiclassical radiation theories with application to the beam maser Proc. IEEE 89 90–108

Dantas C A M, Queroz J R and Barnea B 1998 Superposition of displaced number states and interference effects J. Mod. Opt. 45 1085–96

Nonclassical ‘states’ in quantum optics

Bužek V, Jex I and Quang T 1990 k-photon coherent states J. Mod. Opt. 37 159–63

Nieto M M and Truax D R 1997 Holstein–Primakoff/Bogoliubov transformations and the multiboson system Fortschr. Phys. 45 145–56

Chaturvedi S and Srivinvasan V 1991 Para-Bose oscillator as a deformed Bose oscillator *Phys. Rev.* **A** **44** 8024–6

Katriel J, Solomon A I, D’Ariano G and Rasetti M 1986 Multiboson Holstein–Primakoff squeezed states for \(SU(2)\) and \(SU(1, 1)\) *Phys. Rev. D* **34** 2332–8

Man’ko V I, Marmo G, Sudarshan E C G and Zaccaria F 1997 \(f\)-oscillators and nonlinear coherent states *Phys. Scr.* **55** 528–41

Liu X M 1999 Orthonormalized eigenstates of the operator \((\hat{a}\ f(\hat{\alpha}))^k\ (k \geq 1)\) and their generation *J. Phys. A: Math. Gen.* **32** 8685–9

Quesne C 2001 Generalized coherent states associated with the \(C\)-extended oscillator *Ann. Phys., NY* **293** 147–88

Yuen H P 1986 Generation, detection, and application of high-intensity photon-number-eigenstate fields *Phys. Rev. Lett.* **56** 2176–9

R31

‘Nonclassical’ states in quantum optics
de Matos Filho R L and Vogel W 1996 Even and odd coherent states of the motion of a trapped ion Phys. Rev. Lett. 76 608–11
Davidovich L 1996 Sub-Poissonian processes in quantum optics Rev. Mod. Phys. 68 127–73
Bužek V, Drobný G, Derka R, Adam G and Wiedemann H 1999 Quantum state reconstruction from incomplete data Chaos Solitons Fractals 10 981–1074
Kis Z, Vogel W, Davidovich L and Zagury N 2001 Dark SU(2) states of the motion of a trapped ion Phys. Rev. A 63 053410
Englert B-G and Walther H 2000 Preparing a GHZ state, or an EPR state, with the one-atom maser Opt. Commun. 179 283–8
Shih C C 1986 Sub-Poissonian distribution in hadronic processes Phys. Rev. D 34 2720–6
'Nonclassical' states in quantum optics

Man’ko O V 1994 Correlated squeezed states of a Josephson junction J. Korean. Phys. Soc. 27 1–4

